On vectorially parameterized natural strain measures of the non-linear Cosserat continuum

The natural Lagrangian stretch and wryness tensors of the non-linear Cosserat continuum are expressed in terms of the general finite rotation vector. These expressions are then specialized for seven particular definitions of the rotation vectors known in the literature. It is expected that some of the vectorially parameterized strain measures derived here may be more convenient than others in specific applications.

[1]  W. Pietraszkiewicz Finite Rotations in Structural Mechanics , 1986 .

[2]  Dewey H. Hodges,et al.  A geometrically nonlinear theory of elastic plates , 1993 .

[3]  J. Dyszlewicz Micropolar theory of elasticity , 2004 .

[4]  S. Atluri,et al.  Rotations in computational solid mechanics , 1995 .

[5]  L. Zubov,et al.  Conservation Laws and COnjugate Solutions in the Elasticity of Simple Materials and Materials with Couple Stress , 1998 .

[6]  R. Naghdabadi,et al.  Energy pairs in the micropolar continuum , 2007 .

[7]  P. Tait Vector Analysis , 1893, Nature.

[8]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[9]  L. Zubov Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies , 2001 .

[10]  J. Rooney A Survey of Representations of Spatial Rotation about a Fixed Point , 1977 .

[11]  Victor A. Eremeyev,et al.  On natural strain measures of the non-linear micropolar continuum , 2009 .

[12]  O. Bauchau,et al.  The Vectorial Parameterization of Rotation , 2003 .

[13]  J. Mąkowski,et al.  Statyka i dynamika powłok wielopłatowych : nieliniowa teoria i metoda elementów skończonych , 2004 .

[14]  W. Pietraszkiewicz,et al.  On Geometrically Non-Linear Theory of Elastic Shells Derived from Pseudo-Cosserat Continuum with Constrained Micro-Rotations , 1986 .

[15]  Dewey H. Hodges,et al.  Nonlinear Composite Beam Theory , 2006 .

[16]  Leopold Alexander Pars,et al.  A Treatise on Analytical Dynamics , 1981 .

[17]  Holm Altenbach,et al.  Mechanics of Generalized Continua , 2010 .

[18]  L. I. Shkutin Nonlinear models of deformable media with couple-stresses , 1980 .

[19]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[20]  M. Beatty Vector Analysis of Finite Rigid Rotations , 1977 .

[21]  W. Pietraszkiewicz Finite rotations and Lagrangean description in the non-linear theory of shells , 1979 .

[22]  M. Borri,et al.  On Representations and Parameterizations of Motion , 2000 .

[23]  Charles B. Kafadar,et al.  Micropolar media—I the classical theory , 1971 .

[24]  W. Nowacki,et al.  Theory of asymmetric elasticity , 1986 .

[25]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[26]  H. Hopf Systeme symmetrischer Bilinearformen und euklidische Modelle der projektiven Räume , 1964 .

[28]  Janusz Badur,et al.  Finite rotations in the description of continuum deformation , 1983 .