On Anisotropic Regularity Criteria for the Solutions to 3D Navier–Stokes Equations

In this short note we consider the 3D Navier–Stokes equations in the whole space, for an incompressible fluid. We provide sufficient conditions for the regularity of strong solutions in terms of certain components of the velocity gradient. Based on the recent results from Kukavica (J Math Phys 48(6):065203, 2007) we show these conditions as anisotropic regularity criteria which partially interpolate results from Kukavica (J Math Phys 48(6):065203, 2007) and older results of similar type from Penel and Pokorný (Appl Math 49(5):483–493, 2004).

[1]  Yong Zhou,et al.  On the regularity of the solutions of the Navier–Stokes equations via one velocity component , 2010 .

[2]  Patrick Penel,et al.  Anisotropic and Geometric Criteria for Interior Regularity of Weak Solutions to the 3D Navier—Stokes Equations , 2001 .

[3]  Yong Zhou,et al.  A New Regularity Criterion for the Navier-Stokes Equations in Terms of the Gradient of One Velocity Component , 2002 .

[4]  Igor Kukavica,et al.  Navier-Stokes equations with regularity in one direction , 2007 .

[5]  Igor Kukavica,et al.  One component regularity for the Navier–Stokes equations , 2006 .

[6]  Dongho Chae,et al.  Generic Solvability of the Axisymmetric 3-D Euler Equations and the 2-D Boussinesq Equations , 1999 .

[7]  Luigi C. Berselli,et al.  Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .

[8]  Yong Zhou,et al.  A new regularity criterion for weak solutions to the Navier–Stokes equations , 2005 .

[9]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[10]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[11]  J. Neustupa,et al.  REGULARITY OF A SUITABLE WEAK SOLUTION TO THE NAVIER-STOKES EQUATIONS AS A CONSEQUENCE OF REGULARITY OF ONE VELOCITY COMPONENT , 2002 .

[12]  Giovanni P. Galdi,et al.  An Introduction to the Navier-Stokes Initial-Boundary Value Problem , 2000 .

[13]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[14]  J. Serrin The initial value problem for the Navier-Stokes equations , 1963 .

[15]  Milan Pokorny On the result of He concerning the smoothness of solutions to the Navier-Stokes equations , 2003 .

[16]  Yong Zhou,et al.  On a regularity criterion for the Navier–Stokes equations involving gradient of one velocity component , 2009 .

[17]  N. A. Shananin Regularity of solutions to the Navier-Stokes equations , 1996 .

[18]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[19]  P. Constantin,et al.  Topics in mathematical fluid mechanics , 2013 .

[20]  A short note on regularity criteria for the Navier–Stokes equations containing the velocity gradient , 2005 .

[21]  H.BeirāodaVeiga A New Regularity Class for the Navier-Stokes Equations in IR^n , 1995 .

[22]  Milan Pokorný,et al.  Some New Regularity Criteria for the Navier-Stokes Equations Containing Gradient of the Velocity , 2004 .