Quantum-critical scale invariance in a transition metal alloy

[1]  Patrick A. Lee,et al.  Disordered Electronic Systems , 1985, The Quantum Nature of Materials.

[2]  S. Sachdev,et al.  Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode , 2020, 2004.05182.

[3]  M. Dion,et al.  Universal T-linear resistivity and Planckian dissipation in overdoped cuprates , 2018, Nature Physics.

[4]  P. Zavalij,et al.  Evolution of structure and superconductivity in Ba(Ni1−xCox)2As2 , 2018, Physical Review B.

[5]  S. Ciuchi,et al.  The origin of Mooij correlations in disordered metals , 2018, npj Quantum Materials.

[6]  J. Betts,et al.  Scale-invariant magnetoresistance in a cuprate superconductor , 2017, Science.

[7]  H. Bei,et al.  Quantum critical behavior in the asymptotic limit of high disorder in the medium entropy alloy NiCoCr0.8 , 2017, npj Quantum Materials.

[8]  H. Bei,et al.  Quantum critical behavior in the asymptotic limit of high disorder in the medium entropy alloy NiCoCr0.8 , 2017 .

[9]  S. Blundell,et al.  Quantum Griffiths Phase Inside the Ferromagnetic Phase of Ni_{1-x}V_{x}. , 2016, Physical review letters.

[10]  R. McDonald,et al.  Scaling between magnetic field and temperature in the high-temperature superconductor BaFe2(As1−xPx)2 , 2016, Nature Physics.

[11]  G. M. Stocks,et al.  Quantum Critical Behavior in a Concentrated Ternary Solid Solution , 2016, Scientific Reports.

[12]  T. R. Kirkpatrick,et al.  Metallic Quantum Ferromagnets , 2015, 1502.02898.

[13]  H. Löhneysen,et al.  Anomalous quantum criticality in an itinerant ferromagnet , 2015, Nature Communications.

[14]  D. Johnston,et al.  Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR. , 2015, Physical review letters.

[15]  D. Johnston,et al.  Coexistence of antiferromagnetic and ferromagnetic spin correlations in SrCo2As2 revealed by 59Co and 75As NMR , 2015, 1506.00994.

[16]  T. R. Kirkpatrick,et al.  Exponent relations at quantum phase transitions with applications to metallic quantum ferromagnets , 2015, 1503.04175.

[17]  L. S. Wu,et al.  Quantum critical fluctuations in layered YFe2Al10 , 2014, Proceedings of the National Academy of Sciences.

[18]  Y. Lee,et al.  Crystallography and Physical Properties of BaCo2As2, Ba0.94K0.06Co2As2, and Ba0.78K0.22Co2As2 , 2014, 1406.7249.

[19]  T. Shibauchi,et al.  A Quantum Critical Point Lying Beneath the Superconducting Dome in Iron Pnictides , 2013, 1304.6387.

[20]  M. Nicklas,et al.  Ferromagnetic Quantum Critical Point in the Heavy-Fermion Metal YbNi4(P1−xAsx)2 , 2013, Science.

[21]  J. Chu,et al.  Divergent Nematic Susceptibility in an Iron Arsenide Superconductor , 2012, Science.

[22]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[23]  Y. Tomioka,et al.  Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[24]  Tetsuo Takahashi,et al.  Electron-hole asymmetry in the superconductivity of doped BaFe 2 As 2 seen via the rigid chemical-potential shift in photoemission , 2011 .

[25]  P. Coleman,et al.  Quantum Criticality Without Tuning in the Mixed Valence Compound β-YbAlB4 , 2011, Science.

[26]  A. P. Sorini,et al.  Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition , 2010, Proceedings of the National Academy of Sciences.

[27]  P. McMahon,et al.  In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor , 2010, Science.

[28]  R. Greene,et al.  High-temperature superconductivity in iron-based materials , 2010, 1006.4618.

[29]  A. Bostwick,et al.  Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity , 2010 .

[30]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[31]  Jiaqiang Yan,et al.  Phase diagrams of Ba(Fe 1-x M x ) 2 As 2 single crystals ( M=Rh and Pd) , 2009 .

[32]  A. Green,et al.  Inhomogeneous phase formation on the border of itinerant ferromagnetism. , 2009, Physical review letters.

[33]  J. Q. Yan,et al.  Decoupling of the superconducting and magnetic/structural phase transitions in electron-doped BaFe2As2 , 2009, 0904.3134.

[34]  R. Arita,et al.  Pnictogen height as a possible switch between high- T c nodeless and low- T c nodal pairings in the iron-based superconductors , 2009, 0904.2612.

[35]  E. Bauer,et al.  Structure and Anisotropic Properties of BaFe2-xNixAs2 (x = 0, 1, and 2) Single Crystals , 2009, 0901.0268.

[36]  A. Sefat,et al.  Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point , 2008, 0811.2523.

[37]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[38]  T. Kamiya,et al.  Itinerant ferromagnetism in the layered crystals LaCoOX(X=P,As) , 2008, 0806.0123.

[39]  A. Chubukov,et al.  Quantum critical behavior in itinerant electron systems: Eliashberg theory and instability of a ferromagnetic quantum critical point , 2006, cond-mat/0605306.

[40]  G. Stewart Non-Fermi-liquid behavior in d- and f-electron metals , 2006 .

[41]  G. Aeppli,et al.  Onset of antiferromagnetism in heavy-fermion metals , 2000, Nature.

[42]  T. R. Kirkpatrick,et al.  Nonanalytic behavior of the spin susceptibility in clean Fermi systems , 1996, cond-mat/9611099.

[43]  A. Millis,et al.  Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. , 1993, Physical review. B, Condensed matter.

[44]  Yoshinori Takahashi,et al.  Spin fluctuations in itinerant electron magnetism , 1985 .

[45]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .