Neuromorphic log-domain silicon synapse circuits obey bernoulli dynamics: a unifying tutorial analysis

The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4th) order topology.

[1]  Christofer Toumazou,et al.  Bernoulli operator: a low-level approach to log-domain processing , 1997 .

[2]  Chiara Bartolozzi,et al.  Synaptic Dynamics in Analog VLSI , 2007, Neural Computation.

[3]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[4]  Patrick Degenaar,et al.  Measured hyperbolic-sine (sinh) CMOS results: A high-order 10 Hz-1 kHz notch filter for 50/60 Hz noise , 2013, Microelectron. J..

[5]  Shih-Chii Liu Analog VLSI Circuits for Short-Term Dynamic Synapses , 2003, EURASIP J. Adv. Signal Process..

[6]  Yannis Tsividis,et al.  Mixed analog-digital VLSI devices and technology , 1996 .

[7]  A. J. Payne,et al.  A Bernoulli Cell-Based Investigation of the Non-Linear Dynamics in Log-Domain Structures , 2000 .

[8]  Emmanuel M. Drakakis,et al.  Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study , 2013, PloS one.

[9]  Yingxue Wang,et al.  Multilayer Processing of Spatiotemporal Spike Patterns in a Neuron with Active Dendrites , 2010, Neural Computation.

[10]  Richard H. R. Hahnloser,et al.  Silicon synaptic depression , 2001, Biological Cybernetics.

[11]  Kwabena Boahen,et al.  A superposable silicon synapse with programmable reversal potential , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[12]  Jie Wu,et al.  Log-domain synthesis of an nth-order filter , 1998 .

[13]  C. Toumazou,et al.  Log-domain filters, translinear circuits and the Bernoulli cell , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[14]  Yannis Tsividis,et al.  Externally linear, time-invariant systems and their application to companding signal processors , 1997 .

[15]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[16]  E.M. Drakakis,et al.  A Biomimetic, 4.5 $\mu$W, 120+ dB, Log-Domain Cochlea Channel With AGC , 2009, IEEE Journal of Solid-State Circuits.

[17]  Kwabena Boahen,et al.  Dynamic computation in a recurrent network of heterogeneous silicon neurons , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[18]  K.M. Hynna,et al.  A silicon implementation of the thalamic low threshold calcium current , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[19]  Gert Cauwenberghs,et al.  Log-Domain Time-Multiplexed Realization of Dynamical Conductance-Based Synapses , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[20]  Emmanuel M. Drakakis,et al.  A 19 nW analogue CMOS log-domain 6th-order Bessel filter without E-minus cells , 2009, Microelectron. J..

[21]  E.M. Drakakis,et al.  Memristors and Bernoulli dynamics , 2010, 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010).

[22]  D. Koshland Frontiers in neuroscience. , 1988, Science.

[23]  Kwabena Boahen,et al.  Dynamical System Guided Mapping of Quantitative Neuronal Models Onto Neuromorphic Hardware , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Kwabena Boahen,et al.  Silicon-Neuron Design: A Dynamical Systems Approach , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Gordon W. Roberts,et al.  Log-domain filters based on LC ladder synthesis , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[26]  Surachoke Thanapitak,et al.  A Bionics Chemical Synapse , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[27]  Emmanuel M. Drakakis,et al.  Log-domain filtering and the Bernoulli cell , 1999 .

[28]  Emmanuel M. Drakakis,et al.  Operational dc constraints for a class-A, third-order, observer canonical-form log-domain filter , 2003 .

[29]  Kwabena Boahen,et al.  Silicon neurons that inhibit to synchronize , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[30]  E. M. Drakakis,et al.  Quantitative measure of hysteresis for memristors through explicit dynamics , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Timothy K. Horiuchi,et al.  A Summating, Exponentially-Decaying CMOS Synapse for Spiking Neural Systems , 2003, NIPS.

[32]  A. C. van der Woerd,et al.  General current-mode analysis method for translinear filters , 1997 .

[33]  Craig T. Jin,et al.  A log-domain implementation of the Mihalas-Niebur neuron model , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[34]  Kwabena Boahen,et al.  The Retinomorphic Approach: Pixel-Parallel Adaptive Amplification, Filtering, and Quantization , 1997 .

[35]  Kwabena Boahen,et al.  A Recurrent Model of Orientation Maps with Simple and Complex Cells , 2003, NIPS.

[36]  Giacomo Indiveri,et al.  Synthesis of log-domain integrators for silicon synapses with global parametric control , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[37]  Tobi Delbrück,et al.  Orientation-Selective aVLSI Spiking Neurons , 2001, NIPS.

[38]  C. Toumazou,et al.  "Log-domain state-space": a systematic transistor-level approach for log-domain filtering , 1999 .

[39]  Kwabena Boahen,et al.  Translinear circuits in subthreshold MOS , 1996 .

[40]  Emmanuel M. Drakakis,et al.  CMOS weak‐inversion log‐domain glycolytic oscillator: a cytomimetic circuit example , 2014, Int. J. Circuit Theory Appl..

[41]  Mauricio Barahona,et al.  Device Properties of Bernoulli Memristors , 2012, Proceedings of the IEEE.

[42]  Emmanuel M. Drakakis Systematic derivation of explicit design formulae for log-domain: A 3rd-order lowpass example , 2006, Microelectron. J..

[43]  E. M. Drakakis,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 a Biomimetic, 4.5µw, 120+db, Log-domain Cochlea Channel with Agc , 2022 .

[44]  Jan Mulder,et al.  Static and dynamic translinear circuits , 1998 .