Variance analysis and biomedical pattern classification

Component analysis is a common method used for the interpretation of data; however, in the case of pattern classification, the transformation of possibly correlated features into a new set of uncorrelated variables, must be used with caution since a principal component, which may account for significant variance in the data, is not necessarily discriminatory. To compensate for this deficiency, we present a classification method using an adaptive network of fuzzy logic connectives to select the most discriminatory principal components. We empirically evaluate the effectiveness of this classification method using a suite of biomedical datasets and comparing its performance against a set of benchmark classifiers.

[1]  Robert J. Schalkoff,et al.  Pattern recognition : statistical, structural and neural approaches / Robert J. Schalkoff , 1992 .

[2]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[3]  D. L. Pavia,et al.  Introduction to Spectroscopy , 1978 .

[4]  Bryan F. J. Manly,et al.  Multivariate Statistical Methods : A Primer , 1986 .

[5]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[6]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[7]  Brian Everitt,et al.  Principles of Multivariate Analysis , 2001 .

[8]  Witold Pedrycz,et al.  A fuzzy logic network for pattern classification , 2009, NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy Information Processing Society.

[9]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[10]  J. Gower,et al.  Methods for statistical data analysis of multivariate observations , 1977, A Wiley publication in applied statistics.

[11]  J. D. Jobson,et al.  Categorical and multivariate methods , 1992 .

[12]  I. Bernstein Applied Multivariate Analysis , 1988 .

[13]  H. Friebolin,et al.  Basic one- and two-dimensional NMR spectroscopy , 1991 .

[14]  Bernadette Bouchon-Meunier,et al.  Modern Information Processing: From Theory to Applications , 2011 .

[15]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[16]  F. Kianifard Applied Multivariate Data Analysis: Volume II: Categorical and Multivariate Methods , 1994 .

[17]  Max A. Little,et al.  Suitability of Dysphonia Measurements for Telemonitoring of Parkinson's Disease , 2008, IEEE Transactions on Biomedical Engineering.

[18]  J. Fleiss Measuring agreement between two judges on the presence or absence of a trait. , 1975, Biometrics.

[19]  Witold Pedrycz,et al.  Discriminatory Components for Pattern Classification , 2009, IFSA/EUSFLAT Conf..

[20]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[21]  Metin Akay,et al.  Nonlinear Biomedical Signal Processing: Fuzzy Logic, Neural Networks, and New Algorithms , 2000 .

[22]  Brian Everitt,et al.  MOMENTS OF THE STATISTICS KAPPA AND WEIGHTED KAPPA , 1968 .

[23]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[24]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[25]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[26]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[27]  Helena Chmura Kraemer,et al.  Evaluating Medical Tests: Objective and Quantitative Guidelines , 1992 .

[28]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[29]  Lukasz A. Kurgan,et al.  Knowledge discovery approach to automated cardiac SPECT diagnosis , 2001, Artif. Intell. Medicine.

[30]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[31]  Ray L. Somorjai,et al.  Neural network classification of infrared spectra of control and Alzheimer's diseased tissue , 1995, Artif. Intell. Medicine.

[32]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[33]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[34]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[35]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[36]  Charles M. Bachmann,et al.  Neural Networks and Their Applications , 1994 .

[37]  G. Seber Multivariate observations / G.A.F. Seber , 1983 .

[38]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[39]  Witold Pedrycz,et al.  Classification of Biomedical Spectra Using Fuzzy Interquartile Encoding and Stochastic Feature Selection , 2007, 2007 IEEE Symposium on Computational Intelligence and Data Mining.

[40]  Ivan Bratko,et al.  ASSISTANT 86: A Knowledge-Elicitation Tool for Sophisticated Users , 1987, EWSL.

[41]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[42]  Witold Pedrycz,et al.  Fuzzy Adaptive Logic Networks as Hybrid Models of Quantitative Software Engineering , 2006, Intell. Autom. Soft Comput..

[43]  Christian Jacob,et al.  Illustrating Evolutionary Computation with Mathematica , 2001 .

[44]  Massimiliano Pontil,et al.  Support Vector Machines: Theory and Applications , 2001, Machine Learning and Its Applications.

[45]  Jing-Yu Yang,et al.  Optimal discriminant plane for a small number of samples and design method of classifier on the plane , 1991, Pattern Recognit..