On collisionless ion and electron populations in the magnetic nozzle experiment (MNX)

The Magnetic Nozzle Experiment (MNX) is a linear magnetized helicon-heated plasma device, with applications to advanced spacecraft-propulsion methods and solar-corona physics. This paper reviews ion and electron energy distributions measured in MNX with laser-induced fluorescence (LIF) and probes, respectively. Ions, cold and highly collisional in the main MNX region, are accelerated along a uniform magnetic field to sonic then supersonic speeds as they exit the main region through either mechanical or magnetic apertures. A sharp decrease in density downstream of the aperture(s) helps effect a transition from collisional to collisionless plasma. The electrons in the downstream region have an average energy somewhat higher than that in the main region. From LIF ion-velocity measurements, we find upstream of the aperture a presheath of strength Deltaphips=mrTe, where mrTe is the electron temperature in the main region, and length ~3 cm, comparable to the ion-neutral mean-free-path; immediately downstream of the aperture is an electrostatic double layer of strength DeltaphiDL=3-10 mrTe and length 0.3-0.6 cm, 30-600lambdaD. The existence of a small, ca. 0.1%, superthermal electron population with average energy ~10 mrTe is inferred from considerations of spectroscopic line ratios, floating potentials, and Langmuir probe data. The superthermal electrons are suggested to be the source for the large DeltaphiDL

[1]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[2]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[3]  F. Levinton,et al.  Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device , 2003 .

[4]  R. Miller,et al.  Density profile control in a large diameter, helicon plasma , 2004 .

[5]  Stenzel,et al.  Observation of a stationary, current-free double layer in a plasma. , 1990, Physical review letters.

[6]  N. Hershkowitz Review of recent laboratory double layer experiments , 1985 .

[7]  Francis F. Chen,et al.  Helicons-the early years , 1997 .

[8]  E. Scime,et al.  On-axis parallel ion speeds near mechanical and magnetic apertures in a helicon plasma device , 2005 .

[9]  Boris N. Breizman,et al.  Theoretical components of the VASIMR plasma propulsion concept , 2004 .

[10]  C. Charles,et al.  Observations of ion-beam formation in a current-free double layer. , 2005, Physical review letters.

[11]  Francis F. Chen,et al.  Plasma ionization by helicon waves , 1991 .

[12]  F. C. Díaz The VASIMR Rocket. , 2000 .

[13]  Richard Howell Goulding,et al.  Comparing experiments with modeling for light ion helicon plasma sources , 2002 .

[14]  Shuichi Takamura,et al.  Helium I Line Intensity Ratios in a Plasma for the Diagnostics of Fusion Edge Plasmas , 1995 .

[15]  N. Hershkowitz,et al.  MULTIPLE ELECTRON BEAMS GENERATED BY A HELICON PLASMA DISCHARGE , 1998 .

[16]  E. B. Hooper Plasma detachment from a magnetic nozzle , 1991 .

[17]  E. Scime,et al.  Measurement of asymmetric optical pumping of ions accelerating in a magnetic-field gradient. , 2004, Physical review letters.

[18]  Blaine A. Bell,et al.  Atomic Line Data , 1995 .

[19]  N. Plihon,et al.  Double layer formation in the expanding region of an inductively coupled electronegative plasma , 2005, 1504.02313.

[20]  R. Boswell,et al.  Observation of nonthermal electron tails in an rf excited argon magnetoplasma , 1991 .

[21]  Akio Komori,et al.  Helicon waves and efficient plasma production , 1991 .

[22]  S. Takamura,et al.  Sheath formation in the SOL plasma with energetic electrons , 1990 .

[23]  Jim Gilland Application of a helicon discharge to electric propulsion , 1998 .

[24]  J. Kline,et al.  Electron temperature measurement by a helium line intensity ratio method in helicon plasmas , 1999 .

[25]  R. Stenzel,et al.  Particle dynamics and current‐free double layers in an expanding, collisionless, two‐electron‐population plasma , 1991 .

[26]  Jared P. Squire,et al.  Plasma Heating Simulation in the VASIMR System , 2005 .

[27]  K. Akhtar,et al.  Optical, wave measurements, and modeling of helicon plasmas for a wide range of magnetic fields , 2004 .

[28]  Gregory Deane Severn,et al.  Argon ion laser-induced fluorescence with diode lasers , 1998 .

[29]  Roderick Boswell,et al.  Helicons-the past decade , 1997 .

[30]  L. Block A double layer review , 1978 .

[31]  G. Baraff,et al.  Surface-Wave Instability in Helicon-Wave Propagation , 1966 .

[32]  R. Boswell,et al.  The application of the helicon source to plasma processing , 1991 .

[33]  R. Boswell,et al.  Plasma production using a standing helicon wave , 1970 .

[34]  F. Miyawaki,et al.  Formation of presheath and current‐free double layer in a two‐electron‐temperature plasma , 1992 .

[35]  E. Scime,et al.  Laser induced fluorescence in Ar and He plasmas with a tunable diode laser , 2003 .

[36]  Robert H. Frisbee,et al.  Advanced Space Propulsion for the 21st Century , 2003 .

[37]  R. Schrittwieser,et al.  Observation of double layers in a convergent magnetic field , 1992 .

[38]  M. Raadu The physics of double layers and their role in astrophysics , 1989 .

[39]  D. Blackwell,et al.  Upper Limit to Landau Damping in Helicon Discharges , 1999 .

[40]  T. Gyergyek,et al.  Collector floating potentials in a discharge plasma , 2001 .