The Effective Size of a Metapopulation Living in a Heterogeneous Patch Network

I analyze stochastic patch occupancy models (SPOMs), which record habitat patches as empty or occupied. A problem with SPOMs has been that if the spatial structure of a heterogeneous habitat patch network is taken into account, the computational effort needed to analyze a SPOM grows as a power of 2n, where n is the number of habitat patches. I propose a computationally feasible approximation method, which approximates the behavior of a heterogeneous SPOM by an “ideal” metapopulation inhabiting a network of identical and equally connected habitat patches. The transformation to the ideal metapopulation is based on weighting the individual patch occupancies by the dynamic values of the habitat patches, which may be calculated from the deterministic mean‐field approximation of the original SPOM. Conceptually, the method resembles the calculation of the effective size of a population in the context of population genetics. I demonstrate how the method may be applied to SPOMs with flexible structural assumptions and with spatially correlated and temporally varying parameter values. I apply the method to a real habitat patch network inhabited by the Glanville fritillary butterfly, illustrating that the metapopulation dynamics of this species are essentially driven by temporal variability in the environmental conditions.

[1]  Atte Moilanen,et al.  The equilibrium assumption in estimating the parameters of metapopulation models. , 2000 .

[2]  James H. Brown,et al.  Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction , 1977 .

[3]  R. Lande,et al.  Extinction Thresholds in Demographic Models of Territorial Populations , 1987, The American Naturalist.

[4]  Bai-Lian Li,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2002 .

[5]  M. Baars,et al.  Population dynamics of two carabid beetles at a Dutch heathland. I. Subpopulation fluctuations in relation to weather and dispersal , 1984 .

[6]  M. Gilpin,et al.  Metapopulation Biology: Ecology, Genetics, and Evolution , 1997 .

[7]  R. Lande,et al.  Spatial Scale of Population Synchrony: Environmental Correlation versus Dispersal and Density Regulation , 1999, The American Naturalist.

[8]  Ulf Dieckmann,et al.  Relaxation Projections and the Method of Moments , 1999 .

[9]  Philip K. Pollett,et al.  Modelling quasi-stationary behaviour in metapopulations , 1999 .

[10]  D. McCullough,et al.  Spatially structured populations and harvest theory , 1996 .

[11]  O. Ovaskainen,et al.  Spatially structured metapopulation models: global and local assessment of metapopulation capacity. , 2001, Theoretical population biology.

[12]  M. Whitlock,et al.  The effective size of a subdivided population. , 1997, Genetics.

[13]  N. Goel,et al.  Stochastic models in biology , 1975 .

[14]  Alan Hastings,et al.  Structured models of metapopulation dynamics , 1991 .

[15]  P. Marquet,et al.  Threshold parameters and metapopulation persistence , 1999, Bulletin of mathematical biology.

[16]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[17]  Karin Frank,et al.  A Formula for the Mean Lifetime of Metapopulations in Heterogeneous Landscapes , 2002, The American Naturalist.

[18]  D. Esler Applying Metapopulation Theory to Conservation of Migratory Birds , 2000 .

[19]  Frederick R. Adler,et al.  Persistence in patchy irregular landscapes , 1994 .

[20]  Chris D. Thomas,et al.  Correlated extinctions, colonizations and population fluctuations in a highly connected ringlet butterfly metapopulation , 1997, Oecologia.

[21]  Otso Ovaskainen,et al.  The metapopulation capacity of a fragmented landscape , 2000, Nature.

[22]  Rolf A. Ims,et al.  geographical synchrony in microtine population cycles: a theoretical evaluation of the role of nomadic avian predators , 1990 .

[23]  Ilkka Hanski,et al.  Long‐Term Dynamics in a Metapopulation of the American Pika , 1998, The American Naturalist.

[24]  B. Charlesworth,et al.  Effects of metapopulation processes on measures of genetic diversity. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  G. C. L. Bertram,et al.  Principles of animal ecology , 1951 .

[26]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[27]  I. Hanski,et al.  Migration, Metapopulation Dynamics and Fugitive Co-existence , 1993 .

[28]  S. Harrison,et al.  Local extinction in a metapopulation context: an empirical evaluation , 1991 .

[29]  Otso Ovaskainen,et al.  The quasistationary distribution of the stochastic logistic model , 2001, Journal of Applied Probability.

[30]  Stuart L. Pimm,et al.  The variability of population densities , 1988, Nature.

[31]  Mats Gyllenberg,et al.  Structured Metapopulation Models , 1997 .

[32]  C. D. Thomas,et al.  Spatial and temporal variability in a butterfly population , 1991, Oecologia.

[33]  Mats Gyllenberg,et al.  Single-species metapopulation dynamics: A structured model , 1992 .

[34]  Hugh P. Possingham,et al.  A Stochastic Metapopulation Model with Variability in Patch Size and Position , 1995 .

[35]  C.J.F. ter Braak,et al.  The incidence function approach to modeling of metapopulation dynamics , 1998 .

[36]  C. Thomas,et al.  Spatial dynamics of a patchily distributed butterfly species , 1992 .

[37]  Donald Ludwig,et al.  Uncertainty and the Assessment of Extinction Probabilities , 1996 .

[38]  I. Hanski A Practical Model of Metapopulation Dynamics , 1994 .

[39]  G. Hartvigsen Metapopulation biology: Ecology, genetics, and evolution , 1997 .

[40]  A. Hastings,et al.  Metapopulation Dynamics and Genetics , 1994 .

[41]  Emilio M. Bruna,et al.  Habitat fragmentation and large‐scale conservation: what do we know for sure? , 1999 .

[42]  E. Seneta,et al.  On quasi-stationary distributions in absorbing continuous-time finite Markov chains , 1967, Journal of Applied Probability.

[43]  Atte Moilanen,et al.  PATCH OCCUPANCY MODELS OF METAPOPULATION DYNAMICS: EFFICIENT PARAMETER ESTIMATION USING IMPLICIT STATISTICAL INFERENCE , 1999 .

[44]  Karl P. Schmidt,et al.  Principles of Animal Ecology , 1950 .

[45]  Renato Casagrandi,et al.  A mesoscale approach to extinction risk in fragmented habitats , 1999, Nature.

[46]  M. Holyoak,et al.  A roadmap for metapopulation research. , 1999, Ecology letters.

[47]  R. Lande Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes , 1993, The American Naturalist.

[48]  Donald Ludwig,et al.  Uncertainty, Resource Exploitation, and Conservation: Lessons from History. , 1993, Ecological applications : a publication of the Ecological Society of America.

[49]  Hannu Toivonen,et al.  BAYESIAN ANALYSIS OF METAPOPULATION DATA , 2002 .

[50]  C. Braak,et al.  Toward Ecologically Scaled Landscape Indices , 2001, The American Naturalist.

[51]  R. Lande,et al.  Finite metapopulation models with density–dependent migration and stochastic local dynamics , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[52]  W. Gurney,et al.  Modelling fluctuating populations , 1982 .

[53]  Ilkka Hanski,et al.  Single-Species Spatial Dynamics May Contribute to Long-Term Rarity and Commonness , 1985 .

[54]  A. Hastings,et al.  Within‐Patch Dynamics in a Metapopulation , 1989 .

[55]  E. Ranta,et al.  Population variability in space and time. , 2000, Trends in ecology & evolution.