Active Learning: A Survey

[1]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[2]  Wei Wang,et al.  GAIA: graph classification using evolutionary computation , 2010, SIGMOD Conference.

[3]  Dan Roth,et al.  Learning cost-sensitive active classifiers , 2002, Artif. Intell..

[4]  J. Lafferty,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[5]  Qiang Yang,et al.  Decision trees with minimal costs , 2004, ICML.

[6]  Philip S. Yu,et al.  Active Mining of Data Streams , 2004, SDM.

[7]  John Langford,et al.  Importance weighted active learning , 2008, ICML '09.

[8]  Gerald DeJong,et al.  Active reinforcement learning , 2008, ICML '08.

[9]  David A. Cohn,et al.  Training Connectionist Networks with Queries and Selective Sampling , 1989, NIPS.

[10]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[11]  Jiawei Han,et al.  A Variance Minimization Criterion to Active Learning on Graphs , 2012, AISTATS.

[12]  Wei Fan,et al.  Actively Transfer Domain Knowledge , 2008, ECML/PKDD.

[13]  Vikram Krishnamurthy,et al.  Algorithms for optimal scheduling and management of hidden Markov model sensors , 2002, IEEE Trans. Signal Process..

[14]  Philip S. Yu,et al.  Semi-supervised feature selection for graph classification , 2010, KDD.

[15]  Stefan Wrobel,et al.  Active Hidden Markov Models for Information Extraction , 2001, IDA.

[16]  Rong Jin,et al.  Large-scale text categorization by batch mode active learning , 2006, WWW '06.

[17]  Xin Li,et al.  Active Learning with Multi-Label SVM Classification , 2013, IJCAI.

[18]  Andrew McCallum,et al.  Toward Optimal Active Learning through Sampling Estimation of Error Reduction , 2001, ICML.

[19]  Philip S. Yu,et al.  Graph indexing based on discriminative frequent structure analysis , 2005, TODS.

[20]  David D. Lewis,et al.  Heterogeneous Uncertainty Sampling for Supervised Learning , 1994, ICML.

[21]  Craig A. Knoblock,et al.  Active + Semi-supervised Learning = Robust Multi-View Learning , 2002, ICML.

[22]  Foster J. Provost,et al.  Active feature-value acquisition for classifier induction , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[23]  Huan Liu,et al.  A selective sampling approach to active feature selection , 2004, Artif. Intell..

[24]  H. Sebastian Seung,et al.  Selective Sampling Using the Query by Committee Algorithm , 1997, Machine Learning.

[25]  Mark Craven,et al.  Multiple-Instance Active Learning , 2007, NIPS.

[26]  Jennifer Neville,et al.  Relational Active Learning for Joint Collective Classification Models , 2011, ICML.

[27]  Thomas G. Dietterich,et al.  Active Imitation Learning via Reduction to I.I.D. Active Learning , 2012, AAAI Fall Symposium: Robots Learning Interactively from Human Teachers.

[28]  Naftali Tishby,et al.  Query by Committee Made Real , 2005, NIPS.

[29]  D. Angluin Queries and Concept Learning , 1988 .

[30]  Kentaro Inui,et al.  Selective Sampling for Example-based Word Sense Disambiguation , 1998, CL.

[31]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[32]  Jinbo Bi,et al.  Active learning via transductive experimental design , 2006, ICML.

[33]  Nikolaos Papanikolopoulos,et al.  Multi-class active learning for image classification , 2009, CVPR.

[34]  Hwanjo Yu,et al.  SVM selective sampling for ranking with application to data retrieval , 2005, KDD '05.

[35]  Klaus Brinker,et al.  Incorporating Diversity in Active Learning with Support Vector Machines , 2003, ICML.

[36]  Shiliang Sun,et al.  Multiple-view multiple-learner active learning , 2010, Pattern Recognit..

[37]  Russell Greiner,et al.  Optimistic Active-Learning Using Mutual Information , 2007, IJCAI.

[38]  Lawrence Carin,et al.  Cost-sensitive feature acquisition and classification , 2007, Pattern Recognit..

[39]  Rong Jin,et al.  Active Learning by Querying Informative and Representative Examples , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Arnold W. M. Smeulders,et al.  Active learning using pre-clustering , 2004, ICML.

[41]  Zhi-Hua Zhou,et al.  Multi-View Active Learning in the Non-Realizable Case , 2010, NIPS.

[42]  Lei Wang,et al.  Multilabel SVM active learning for image classification , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[43]  Andrea Esuli,et al.  Active Learning Strategies for Multi-Label Text Classification , 2009, ECIR.

[44]  Huan Liu,et al.  Feature Selection with Selective Sampling , 2002, International Conference on Machine Learning.

[45]  Andrew McCallum,et al.  Reducing Labeling Effort for Structured Prediction Tasks , 2005, AAAI.

[46]  Ran El-Yaniv,et al.  Transductive Rademacher Complexity and Its Applications , 2007, COLT.

[47]  Steve Hanneke,et al.  A bound on the label complexity of agnostic active learning , 2007, ICML '07.

[48]  Shaul Markovitch,et al.  Anytime Induction of Cost-sensitive Trees , 2007, NIPS.

[49]  Andreas Krause,et al.  Active Learning for Multi-Objective Optimization , 2013, ICML.

[50]  Ion Muslea,et al.  Active Learning with Multiple Views , 2009, Encyclopedia of Data Warehousing and Mining.

[51]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[52]  Dragos D. Margineantu,et al.  Active Cost-Sensitive Learning , 2005, IJCAI.

[53]  Xiaodong Lin,et al.  Active Learning from Data Streams , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[54]  Yi Zhang,et al.  Incorporating Diversity and Density in Active Learning for Relevance Feedback , 2007, ECIR.

[55]  Yi Zhang,et al.  Multi-Task Active Learning with Output Constraints , 2010, AAAI.

[56]  Mohan Singh,et al.  Active Learning for Multi-Label Image Annotation , 2009 .

[57]  Naoki Abe,et al.  Query Learning Strategies Using Boosting and Bagging , 1998, ICML.

[58]  John Langford,et al.  Agnostic active learning , 2006, J. Comput. Syst. Sci..

[59]  Sethuraman Panchanathan,et al.  Joint Transfer and Batch-mode Active Learning , 2013, ICML.

[60]  Hans-Peter Kriegel,et al.  Towards an effective cooperation of the user and the computer for classification , 2000, KDD '00.

[61]  Xiaowei Xu,et al.  Representative Sampling for Text Classification Using Support Vector Machines , 2003, ECIR.

[62]  Jie Yin,et al.  Knowledge Transfer for Multi-labeler Active Learning , 2013, ECML/PKDD.

[63]  Greg Schohn,et al.  Less is More: Active Learning with Support Vector Machines , 2000, ICML.

[64]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[65]  Lyle H. Ungar,et al.  Machine Learning manuscript No. (will be inserted by the editor) Active Learning for Logistic Regression: , 2007 .

[66]  Andrew McCallum,et al.  Active Learning by Labeling Features , 2009, EMNLP.

[67]  Zheng Chen,et al.  Effective multi-label active learning for text classification , 2009, KDD.

[68]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[69]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[70]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[71]  Jason Baldridge,et al.  Active Learning and the Total Cost of Annotation , 2004, EMNLP.

[72]  Mark Craven,et al.  An Analysis of Active Learning Strategies for Sequence Labeling Tasks , 2008, EMNLP.

[73]  Jeff A. Bilmes,et al.  Label Selection on Graphs , 2009, NIPS.

[74]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[75]  Meng Wang,et al.  Active learning in multimedia annotation and retrieval: A survey , 2011, TIST.

[76]  Jaime G. Carbonell,et al.  Efficiently learning the accuracy of labeling sources for selective sampling , 2009, KDD.

[77]  Lise Getoor,et al.  Effective label acquisition for collective classification , 2008, KDD.

[78]  Xindong Wu,et al.  Self-Taught Active Learning from Crowds , 2012, 2012 IEEE 12th International Conference on Data Mining.

[79]  Shlomo Argamon,et al.  Committee-Based Sampling For Training Probabilistic Classi(cid:12)ers , 1995 .

[80]  H. Sebastian Seung,et al.  Query by committee , 1992, COLT '92.

[81]  Adam Tauman Kalai,et al.  Analysis of Perceptron-Based Active Learning , 2009, COLT.

[82]  Charu C. Aggarwal,et al.  Outlier Analysis , 2013, Springer New York.

[83]  Rebecca Hwa,et al.  Sample Selection for Statistical Parsing , 2004, CL.

[84]  Burr Settles,et al.  Active Learning , 2012, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[85]  Zhi-Hua Zhou,et al.  On multi-view active learning and the combination with semi-supervised learning , 2008, ICML '08.

[86]  Panagiotis G. Ipeirotis,et al.  Get another label? improving data quality and data mining using multiple, noisy labelers , 2008, KDD.

[87]  Philip S. Yu,et al.  Mining significant graph patterns by leap search , 2008, SIGMOD Conference.

[88]  Jennifer G. Dy,et al.  Active Learning from Crowds , 2011, ICML.

[89]  Stefan Wrobel,et al.  Multi-class Ensemble-Based Active Learning , 2006, ECML.

[90]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[91]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[92]  Jeff A. Bilmes,et al.  Active Semi-Supervised Learning using Submodular Functions , 2011, UAI.

[93]  Ronald Rosenfeld,et al.  A survey of smoothing techniques for ME models , 2000, IEEE Trans. Speech Audio Process..

[94]  Rong Jin,et al.  Semi-supervised SVM batch mode active learning for image retrieval , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[95]  Charu C. Aggarwal,et al.  Selective sampling on graphs for classification , 2013, KDD.

[96]  Craig A. Knoblock,et al.  Selective Sampling with Redundant Views , 2000, AAAI/IAAI.

[97]  Victor S. Sheng,et al.  Feature value acquisition in testing: a sequential batch test algorithm , 2006, ICML.

[98]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[99]  Lise Getoor,et al.  Active Learning for Networked Data , 2010, ICML.

[100]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[101]  Rong Jin,et al.  Batch mode active learning and its application to medical image classification , 2006, ICML.

[102]  Paul N. Bennett,et al.  Dual Strategy Active Learning , 2007, ECML.

[103]  Foster J. Provost,et al.  Active Feature-Value Acquisition , 2009, Manag. Sci..

[104]  Lihong Li,et al.  Unbiased online active learning in data streams , 2011, KDD.

[105]  Xian-Sheng Hua,et al.  Two-Dimensional Active Learning for image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[106]  Mark Craven,et al.  Active Learning with Real Annotation Costs , 2008 .

[107]  Philip S. Yu,et al.  Dual active feature and sample selection for graph classification , 2011, KDD.

[108]  John Langford,et al.  Agnostic Active Learning Without Constraints , 2010, NIPS.

[109]  Philip S. Yu,et al.  Near-optimal Supervised Feature Selection among Frequent Subgraphs , 2009, SDM.

[110]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[111]  Carla E. Brodley,et al.  Active Class Selection , 2007, ECML.

[112]  Eric Horvitz,et al.  Selective Supervision: Guiding Supervised Learning with Decision-Theoretic Active Learning , 2007, IJCAI.

[113]  Andrew McCallum,et al.  Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.

[114]  Qiang Yang,et al.  Heterogeneous Transfer Learning for Image Classification , 2011, AAAI.

[115]  Ian Davidson,et al.  Visual Data Mining: Techniques and Tools for Data Visualization and Mining , 2002 .

[116]  Zhiqiang Zheng,et al.  On active learning for data acquisition , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[117]  Qiang Yang,et al.  Translated Learning: Transfer Learning across Different Feature Spaces , 2008, NIPS.

[118]  Foster J. Provost,et al.  An expected utility approach to active feature-value acquisition , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[119]  Maria-Florina Balcan,et al.  Co-Training and Expansion: Towards Bridging Theory and Practice , 2004, NIPS.

[120]  Jiawei Han,et al.  Towards Active Learning on Graphs: An Error Bound Minimization Approach , 2012, 2012 IEEE 12th International Conference on Data Mining.

[121]  Rong Jin,et al.  Active kernel learning , 2008, ICML '08.

[122]  Claudio Gentile,et al.  Active Learning on Trees and Graphs , 2010, COLT.

[123]  Huan Liu,et al.  Active Feature Selection Using Classes , 2003, PAKDD.

[124]  Udo Hahn,et al.  Multi-Task Active Learning for Linguistic Annotations , 2008, ACL.

[125]  Frank Kreith,et al.  Bang for the Buck , 2012 .

[126]  Francis R. Bach,et al.  Active learning for misspecified generalized linear models , 2006, NIPS.

[127]  Jaime G. Carbonell,et al.  A theory of transfer learning with applications to active learning , 2013, Machine Learning.

[128]  Raymond J. Mooney,et al.  Diverse ensembles for active learning , 2004, ICML.

[129]  Klaus Brinker,et al.  On Active Learning in Multi-label Classification , 2005, GfKl.

[130]  Gábor Lugosi,et al.  Introduction to Statistical Learning Theory , 2004, Advanced Lectures on Machine Learning.