Gauss-Green cubature and moment computation over arbitrary geometries

We have implemented in Matlab a Gauss-like cubature formula over arbitrary bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n-1 using N~cmn^2 nodes, 1@?c@?p, m being the total number of points given on the boundary. It does not need any decomposition of the domain, but relies directly on univariate Gauss-Legendre quadrature via Green's integral formula. Several numerical tests are presented, including computation of standard as well as orthogonal moments over a nonstandard planar region.

[1]  Cheng-Shang Chang Calculus , 2020, Bicycle or Unicycle?.

[2]  Huazhong Shu,et al.  Image reconstruction from limited range projections using orthogonal moments , 2007, Pattern Recognit..

[3]  A. Sommariva,et al.  Meshless cubature over the disk by Thin-Plate Splines ? , 2022 .

[4]  Ronald Cools,et al.  Algorithm 764: Cubpack++: a C++ package for automatic two-dimensional cubature , 1994, TOMS.

[5]  M. Epstein On the Influence of Parametrization in Parametric Interpolation , 1976 .

[6]  Huazhong Shu,et al.  Fast computation of Legendre moments of polyhedra , 2001, Pattern Recognit..

[7]  Boris I. Kvasov,et al.  Methods of Shape-Preserving Spline Approximation , 2000 .

[8]  G. Stoyan de Boor, C., A Practical Guide to Splines. Applied Mathematical Sciences 27. Berlin‐Heidelberg‐New York, Springer‐Verlag 1978. XXIV, 392 S., DM 32,50. US $ 17.90 , 1980 .

[9]  Alvise Sommariva,et al.  Product Gauss cubature over polygons based on Green’s integration formula , 2007 .

[10]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: Computational aspects , 2008 .

[11]  R. A. Usmani,et al.  On orders of approximation of plane curves by parametric cubic splines , 1990 .

[12]  J. Craggs Applied Mathematical Sciences , 1973 .

[13]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[14]  Carl Friedrich Gauss METHODUS NOVA INTEGRALIUM VALORES PER APPROXIMATIONEM INVENIENDI , 2011 .

[15]  G. Green An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism , 2008, 0807.0088.

[16]  Cheng Wang,et al.  Image analysis by modified Legendre moments , 2007, Pattern Recognit..

[17]  Alvise Sommariva,et al.  Meshless cubature over the disk using thin-plate splines , 2008 .

[18]  C. Gauss,et al.  Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum, methodo nova tractata , 1877 .

[19]  Alexander V. Tuzikov,et al.  Moment Computation for Objects with Spline Curve Boundary , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Thierry Blu,et al.  An Exact Method for Computing the Area Moments of Wavelet and Spline Curves , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  I. P. Mysovskih Approximate Calculation of Integrals , 1969 .

[23]  Alvise Sommariva,et al.  Meshless cubature by Green's formula , 2006, Appl. Math. Comput..

[24]  Cleve B. Moler,et al.  Numerical computing with MATLAB , 2004 .

[25]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[26]  M. V Mederos,et al.  Gautschi, Walter. Numerical analysis: an introduction, Birkhäuser, 1997 , 1999 .

[27]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[28]  B. Su,et al.  Computational geometry: curve and surface modeling , 1989 .