Exploring Optical Properties of Liquid Crystals for Developing Label‐Free and High‐Throughput Microfluidic Immunoassays

[1]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[2]  David Juncker,et al.  High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems. , 2004, Lab on a chip.

[3]  P. Yager,et al.  Microfluidic Diffusion-Based Separation and Detection , 1999, Science.

[4]  Ronald T. Raines,et al.  Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals. , 2004, Journal of the American Chemical Society.

[5]  Leroy Hood,et al.  Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. , 2004, Journal of proteome research.

[6]  B. Clare,et al.  Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[7]  Thomas Laurell,et al.  Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. , 2002, Analytical chemistry.

[8]  E. Delamarche,et al.  Microfluidics for Processing Surfaces and Miniaturizing Biological Assays , 2005 .

[9]  C. Murphy,et al.  Using Liquid Crystals to Amplify Protein−Receptor Interactions: Design of Surfaces with Nanometer-Scale Topography that Present Histidine-Tagged Protein Receptors† , 2003 .

[10]  S. Platzgummer,et al.  Accuracy of semiquantitative immunoenzymatic methods in quantitation of anti-topoisomerase I (Scl-70) antibodies , 2005, Clinical Rheumatology.

[11]  David Juncker,et al.  Formation of gradients of proteins on surfaces with microfluidic networks , 2000 .

[12]  D. K. Schwartz,et al.  Anchoring of a nematic liquid crystal on a wettability gradient. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[13]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[14]  Lutz Trahms,et al.  Quantification of specific bindings of biomolecules by magnetorelaxometry , 2008, Journal of nanobiotechnology.

[15]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[16]  Bernhard H Weigl,et al.  Microfluidic technologies in clinical diagnostics. , 2002, Clinica chimica acta; international journal of clinical chemistry.

[17]  Judith Rishpon,et al.  An amperometric biosensor for real-time analysis of molecular recognition , 1998 .

[18]  B. Weigl,et al.  Lab-on-a-chip for drug development. , 2003, Advanced drug delivery reviews.

[19]  C. Xue,et al.  Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  David Juncker,et al.  Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. , 2004, Biosensors & bioelectronics.

[21]  Qiaobing Xu,et al.  A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. , 2005, Analytical chemistry.

[22]  A. Hoffman,et al.  "Smart" mobile affinity matrix for microfluidic immunoassays. , 2004, Lab on a chip.