Pulse Shape Discrimination With Selected Elpasolite Crystals

In recent years, a number of materials from the elpasolite crystal family have been under development for either or both gamma ray and neutron detection. The scintillators show good energy resolution and thermal neutron detection efficiency. The latter is achieved due to the fact, that the selected compositions contain Li-6 ions. In order to effectively and reliably register both types of radiation, it is necessary to separate them through particle identification schemes. This can be accomplished using either pulse height or/and pulse shape discrimination, with the latter being more reliable. In this paper, we summarize our work and provide current status of pulse shape discrimination in the selected elpasolite scintillators. These include Cs2LiYCl6 (CLYC), Cs2LiLaCl6(CLLC), Cs2LiLaBr6(CLLB), and Cs2LiYBr6(CLYB).

[1]  Urmila Shirwadkar,et al.  Bridgman growth of Cs2LiYCl6:Ce and 6Li-enriched Cs26LiYCl6:Ce crystals for high resolution gamma ray and neutron spectrometers , 2010 .

[2]  V. B. Mikhailik,et al.  Luminescence properties of Ce-doped Cs2LiLaCl6 crystals , 2000 .

[3]  Michael R. Squillante,et al.  Comparison of neutron sensitive scintillators for use with a solid-state optical detector , 2009, Optical Engineering + Applications.

[4]  G. W. Mcbeth,et al.  Pulse shape discrimination in inorganic and organic scintillators. I , 1971 .

[5]  Urmila Shirwadkar,et al.  Selected Properties of Cs $_{2}$ LiYCl $_{6}$ , Cs $_{2}$ LiLaCl $_{6}$ , and Cs $_{2}$ LiLaBr $_{6}$ Scintillators , 2011 .

[6]  P. Dorenbos,et al.  New thermal neutron scintillators: Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYBr/sub 6/:Ce/sup 3+/ , 2004, IEEE Transactions on Nuclear Science.

[8]  Urmila Shirwadkar,et al.  Dual gamma neutron detection with Cs2LiLaCl6 , 2009, Optical Engineering + Applications.

[9]  Urmila Shirwadkar,et al.  Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration , 2011 .

[10]  P. Dorenbos,et al.  Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: Cs2LiYX6 (X = Cl, Br) , 2002 .

[11]  J. Glodo,et al.  Scintillation Properties of 1 Inch ${\rm Cs}_{2}{\rm LiYCl}_{6}{:}{\rm Ce}$ Crystals , 2008, IEEE Transactions on Nuclear Science.

[12]  Pieter Dorenbos,et al.  Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6 : Ce3+ crystals , 1999 .

[13]  R. Gurney,et al.  Electronic Processes in Ionic Crystals , 1964 .

[14]  J. Glodo,et al.  ${\rm Cs}_{2}{\rm LiYCl}_{6}:{\rm Ce}$ Scintillator for Nuclear Monitoring Applications , 2009, IEEE Transactions on Nuclear Science.

[15]  A. V. Klimenko,et al.  Pulse-shape analysis of Cs2LiYCl6:Ce scintillator for neutron and gamma-ray discrimination , 2012 .

[16]  Wilfried Blanc,et al.  Optical and scintillation properties of large crystals , 1998 .

[17]  P. Dorenbos,et al.  Development of elpasolite and monoclinic thermal neutron scintillators , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[18]  P. Dorenbos,et al.  Inorganic thermal-neutron scintillators , 2004 .

[19]  Pieter Dorenbos,et al.  Luminescence and scintillation properties of CS2LiYCl6:Ce3+ for γ and neutron detection , 2005 .

[21]  J. Glodo,et al.  Optical and scintillation properties of Cs/sub 2/LiYCl/sub 6/:Ce/sup 3+/ and Cs/sub 2/LiYCl/sub 6/:Pr/sup 3+/ crystals , 2005, IEEE Transactions on Nuclear Science.