High-Performance Image Synthesis for Radio Interferometry

A radio interferometer indirectly measures the intensity distribution of the sky over the celestial sphere. Since measurements are made over an irregularly sampled Fourier plane, synthesising an intensity image from interferometric measurements requires substantial processing. Furthermore there are distortions that have to be corrected. In this thesis, a new high-performance image synthesis tool (imaging tool) for radio interferometry is developed. Implemented in C++ and CUDA, the imaging tool achieves unprecedented performance by means of Graphics Processing Units (GPUs). The imaging tool is divided into several components, and the back-end handling numerical calculations is generalised in a new framework. A new feature termed compression arbitrarily increases the performance of an already highly efficient GPU-based implementation of the w-projection algorithm. Compression takes advantage of the behaviour of oversampled convolution functions and the baseline trajectories. A CPU-based component prepares data for the GPU which is multi-threaded to ensure maximum use of modern multi-core CPUs. Best performance can only be achieved if all hardware components in a system do work in parallel. The imaging tool is designed such that disk I/O and work on CPU and GPUs is done concurrently. Test cases show that the imaging tool performs nearly 100$\times$ faster than another general CPU-based imaging tool. Unfortunately, the tool is limited in use since deconvolution and A-projection are not yet supported. It is also limited by GPU memory. Future work will implement deconvolution and A-projection, whilst finding ways of overcoming the memory limitation.

[1]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[2]  Lei Xing,et al.  GPU computing in medical physics: a review. , 2011, Medical physics.

[3]  H. Schuh,et al.  IRIS‐S: Extending geodetic Very Long Baseline Interferometry observations to the southern hemisphere , 1988 .

[4]  E. W. Greisen,et al.  Representations of spectral coordinates in FITS , 2005 .

[5]  K. I. Kellermann,et al.  Preliminary Specifications for the Square Kilometre Array , 2008 .

[6]  Rüdiger Westermann,et al.  MR image reconstruction using the GPU , 2006, SPIE Medical Imaging.

[7]  William D. Pence CFITSIO, v2.0: A New Full-Featured Data Interface , 1999 .

[8]  M. A. Voronkov,et al.  Wide field imaging for the square kilometre array , 2012, Other Conferences.

[9]  N. Jackson,et al.  Principles of Interferometry , 2008 .

[10]  Tim J. Cornwell,et al.  The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm , 2008, IEEE Journal of Selected Topics in Signal Processing.

[11]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[12]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[13]  Robert H. Frater,et al.  On the reduction of three dimensional interferometer measurements , 1980 .

[14]  E. Greisen,et al.  Representations of celestial coordinates in FITS , 2002, astro-ph/0207413.

[15]  Mark J. Harris,et al.  Parallel Prefix Sum (Scan) with CUDA , 2011 .

[16]  James J. Condon,et al.  Essential Radio Astronomy , 2016 .

[17]  Shibata,et al.  Overview and initial results of the very long baseline interferometry space observatory programme , 1998, Science.

[18]  A. Michelson,et al.  On the Application of Interference Methods to Astronomical Measurements. , 1920, Proceedings of the National Academy of Sciences of the United States of America.

[19]  B. Humphreys,et al.  Analysis of Convolutional Resampling Algorithm Performance , 2011 .

[20]  Rob van Nieuwpoort,et al.  Evaluating multi-core platforms for HPC data-intensive kernels , 2009, CF '09.

[21]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[22]  K. Golap,et al.  CASA Architecture and Applications , 2007 .

[23]  Timothy J. Cornwell,et al.  Radio-interferometric imaging of very large fields. The problem of non-coplanar arrays. , 1992 .

[24]  W. A. Coles,et al.  Interferometric Imaging with the 32 Element Murchison Wide-Field Array , 2010, 1010.1733.

[25]  M. P. van Haarlem,et al.  LOFAR: The Low Frequency Array , 2005 .

[26]  Ana Lucia Varbanescu,et al.  On the effective parallel programming of multi-core processors , 2010 .

[27]  Mark R. Calabretta,et al.  Representations of world coordinates in FITS , 2002, astro-ph/0207407.

[29]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[30]  A. Michelson,et al.  Measurement of the Diameter of Alpha-Orionis by the Interferometer. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Golap,et al.  Wide-field wide-band Interferometric Imaging: The WB A-Projection and Hybrid Algorithms , 2013 .

[32]  R. Bracewell,et al.  Interpolation and Fourier transformation of fringe visibilities , 1974 .

[33]  Radio interferometry , 1964 .

[34]  Narayanan Vijaykrishnan,et al.  An algorithm-architecture co-design framework for gridding reconstruction using FPGAs , 2011, 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC).

[35]  B. G. Clark,et al.  An efficient implementation of the algorithm 'CLEAN' , 1980 .

[36]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[37]  John W. Romein,et al.  An efficient work-distribution strategy for gridding radio-telescope data on GPUs , 2012, ICS '12.

[38]  Clive G. Page,et al.  Definition of the Flexible Image Transport System (FITS), version 3.0 , 2010 .

[39]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[40]  Anders Eklund,et al.  Medical image processing on the GPU - Past, present and future , 2013, Medical Image Anal..

[41]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[42]  Alex Fit-Florea,et al.  Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs , 2011 .

[43]  Guy E. Blelloch,et al.  Prefix sums and their applications , 1990 .

[44]  R. Bracewell,et al.  Radio Interferometry of Discrete Sources , 1958, Proceedings of the IRE.

[45]  J. D. O'Sullivan,et al.  A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.

[46]  Hanspeter Pfister,et al.  Enabling a high throughput real time data pipeline for a large radio telescope array with GPUs , 2010, Comput. Phys. Commun..

[47]  Rob van Nieuwpoort,et al.  Radioastronomy Image Synthesis on the Cell/B.E , 2008, Euro-Par.

[48]  M. Ryle,et al.  The New Cambridge Radio Telescope , 1962, Nature.