The Origin of Evolution in Physical Systems

A tentative outline for a model for the evolution of physical systems is presented. The universal classes of dynamical behaviors found in Cellular Automata experiments provide the basis for introducing the variation-stabiliza- tion principle as a synthetic interpretation of these phenomena. It is suggested that biological evolution takes its root in the evolution of physical systems as a particular case of the variation-stabilization principle that occurs at the transi- tion phase between ordered and chaotic regimes.

[1]  Marc Métivier,et al.  A stress-based speciation model in lifedrop , 2002 .

[2]  N. Packard,et al.  Symbolic dynamics of noisy chaos , 1983 .

[3]  Ales Kubík,et al.  Toward a Formalization of Emergence , 2002, Artif. Life.

[4]  Jean-Claude Heudin,et al.  MODELING COMPLEXITY USING HIERARCHICAL MULTI-AGENT SYSTEMS , 2007 .

[5]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[6]  Jean-Claude Heudin,et al.  A New Candidate Rule for the Game of Two-dimensional Life , 1996, Complex Syst..

[7]  Niels Bohr,et al.  Causality and Complementarity , 1937, Philosophy of Science.

[8]  Claude Lattaud,et al.  Complexity Classes in the Two-dimensional Life Cellular Automata Subspace , 1997, Complex Syst..

[9]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[10]  R. Rohwer Order out of Chaos: Man's New Dialogue with Nature , 1986 .

[11]  Michael F. Shlesinger,et al.  Dynamic patterns in complex systems , 1988 .

[12]  Claude Lattaud,et al.  Studying Complex Stellar Dynamics Using a Hierarchical Multi-Agent Model , 2007 .

[13]  Carter Bays Candidates for the Game of Life in Three Dimensions , 1987, Complex Syst..

[14]  Christopher G. Langton,et al.  Life at the Edge of Chaos , 1992 .

[15]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[16]  Jean-Claude Heudin Complexity classes in three-dimensional gravitational agents , 2002 .

[17]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[18]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..