Calculation of the lattice constant of solids with semilocal functionals

shown to be better than the PBE functional for many but not all compounds. Nevertheless, we note that for some of these new GGA functionals a general improvement of the structural properties is accompanied by a worsening of the thermochemical properties, e.g., the cohesive energy see, e.g., Ref. 19. More generally, due to their rather simple mathematical form dependence on the electron density and its derivative , the accuracy that can be reached with GGA functionals is limited. 20 Therefore more advanced and sometimes more expensive functionals, e.g., the meta-GGA Ref. 21 and hybrid 7 functionals, have been proposed.

[1]  Kieron Burke,et al.  Erratum: Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces [Phys. Rev. Lett. 100 , 136406 (2008)] , 2009 .

[2]  G. Scuseria,et al.  Erratum: Tests of a ladder of density functionals for bulk solids and surfaces [Phys. Rev. B69, 075102 (2004)] , 2008 .

[3]  R. Armiento,et al.  Comment on "restoring the density-gradient expansion for exchange in solids and surfaces". , 2008, Physical review letters.

[4]  G. Scuseria,et al.  Perdew et al. Reply , 2008 .

[5]  D. Truhlar,et al.  Comment on "More accurate generalized gradient approximation for solids" , 2008 .

[6]  Ronald E. Cohen,et al.  Reply to ``Comment on `More accurate generalized gradient approximation for solids''' , 2008 .

[7]  G. Kresse,et al.  SrTiO 3 and BaTiO 3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals , 2008 .

[8]  M. Torrent,et al.  Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations , 2008 .

[9]  W. Dai,et al.  Structural and elastic properties of MgS via first-principle calculations , 2008 .

[10]  Donald G Truhlar,et al.  Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. , 2008, The Journal of chemical physics.

[11]  Georg Kresse,et al.  The AM05 density functional applied to solids. , 2008, The Journal of chemical physics.

[12]  J. Dobson,et al.  Theoretical and semiempirical correction to the long-range dispersion power law of stretched graphite , 2008, 0801.4426.

[13]  K. Kokko,et al.  Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems , 2007, 0711.3747.

[14]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[15]  H. Iyetomi,et al.  Energetics of interlayer binding in graphite: The semiempirical approach revisited , 2007 .

[16]  Georg Kresse,et al.  Range separated hybrid density functional with long-range Hartree-Fock exchange applied to solids. , 2007, The Journal of chemical physics.

[17]  K. Capelle,et al.  How tight is the Lieb-Oxford bound? , 2007, The Journal of chemical physics.

[18]  Peter Blaha,et al.  Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional , 2007 .

[19]  Bo Sundman,et al.  Calculations of thermophysical properties of cubic carbides and nitrides using the Debye–Grüneisen model , 2007 .

[20]  Georg Kresse,et al.  Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .

[21]  G. Madsen Functional form of the generalized gradient approximation for exchange: The PBE α functional , 2006, cond-mat/0609365.

[22]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[23]  Y. Yamamura,et al.  Thermal expansion and Debye temperature of rare earth-doped ceria , 2006 .

[24]  Filipp Furche,et al.  The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. , 2006, The Journal of chemical physics.

[25]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[26]  L. Gerward,et al.  Bulk modulus of CeO2 and PrO2—An experimental and theoretical study , 2005 .

[27]  G. Scuseria,et al.  Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. , 2005, The Journal of chemical physics.

[28]  R. Ahuja,et al.  Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides , 2005 .

[29]  R. Armiento,et al.  Functional designed to include surface effects in self-consistent density functional theory , 2005 .

[30]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[31]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[32]  G. P. Srivastava,et al.  Structural and dynamical properties of zinc-blende GaN, AlN, BN, and their (110) surfaces , 2005 .

[33]  J. Perdew,et al.  Test of a nonempirical density functional: short-range part of the van der Waals interaction in rare-gas dimers. , 2005, The Journal of chemical physics.

[34]  H. Mao,et al.  Hard superconducting nitrides. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[36]  Jianmin Tao,et al.  Erratum: “Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes” [J. Chem. Phys. 119, 12129 (2003)] , 2004 .

[37]  M. Mezouar,et al.  Equations of state of six metals above 94 GPa , 2004 .

[38]  E. Davidson,et al.  Energies of isoelectronic atomic ions from a successful metageneralized gradient approximation and other density functionals , 2004 .

[39]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[40]  Jianmin Tao,et al.  Meta-generalized gradient approximation: explanation of a realistic nonempirical density functional. , 2004, The Journal of chemical physics.

[41]  Jianmin Tao,et al.  Tests of a ladder of density functionals for bulk solids and surfaces , 2004 .

[42]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[43]  O. Madelung Semiconductors: Data Handbook , 2003 .

[44]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[45]  K. Kawamura,et al.  First-principles study of systematics of high-pressure elasticity in rare gas solids, Ne, Ar, Kr, and Xe , 2002 .

[46]  Elisabeth Sjöstedt,et al.  Efficient linearization of the augmented plane-wave method , 2001 .

[47]  Alim Borisovich Alchagirov,et al.  Equations of state motivated by the stabilized jellium model , 2001 .

[48]  K. Reimann,et al.  Atomistic modeling of the ordering of disordered nanocrystalline FeAl and NiAl , 2001 .

[49]  C. Stampfl,et al.  Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations , 2001 .

[50]  David J. Singh,et al.  An alternative way of linearizing the augmented-plane-wave method , 2000 .

[51]  Börje Johansson,et al.  Constitutional and thermal point defects in B2 NiAl , 2000 .

[52]  John P. Perdew,et al.  Erratum: Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation [Phys. Rev. Lett. 82, 2544 (1999)] , 1999 .

[53]  B. Johansson,et al.  Elastic properties of sub-stoichiometric titanium carbides: Comparison of FP-LMTO calculations and experimental results , 1999 .

[54]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .

[55]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[56]  Axel D. Becke,et al.  Exploring the limits of gradient corrections in density functional theory , 1999, J. Comput. Chem..

[57]  Duan Su-qing,et al.  FIRST-PRINCIPLES CALCULATION OF VIBRATIONAL ENTROPY FOR FE-AL COMPOUNDS , 1998 .

[58]  W. Kohn,et al.  Edge Electron Gas , 1998, cond-mat/9806154.

[59]  Yingkai Zhang,et al.  Describing van der Waals interaction in diatomic molecules with generalized gradient approximations: The role of the exchange functional , 1997 .

[60]  Jacques Weber,et al.  Comparative Study of Benzene···X (X = O2, N2, CO) Complexes Using Density Functional Theory: The Importance of an Accurate Exchange−Correlation Energy Density at High Reduced Density Gradients , 1997 .

[61]  Weihua Tang,et al.  Effects of Mn and Cu doping in La(T,Al)13 (T=Fe,Co) on crystal structure and magnetic properties , 1997 .

[62]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[63]  Svendsen,et al.  Gradient expansion of the exchange energy from second-order density response theory. , 1996, Physical review. B, Condensed matter.

[64]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[65]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[66]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[67]  Rabe,et al.  Ab initio pseudopotential calculations for aluminum-rich cobalt compounds. , 1994, Physical review. B, Condensed matter.

[68]  A. Campbell,et al.  Compression of MgS TO 54 GPa , 1994 .

[69]  David J. Singh Planewaves, Pseudopotentials, and the LAPW Method , 1993 .

[70]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[71]  Y. Takéuchi,et al.  Electron density distribution in MgS , 1993 .

[72]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[73]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[74]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[75]  Swenson Ca,et al.  Experimental equations of state for calcium, strontium, and barium metals to 20 kbar from 4 to 295 K , 1990 .

[76]  A. Fox Structure factors and the critical voltage effect in ordered b.c.c. (B2) alloys: II. The analysis of critical voltage measurements in α'FeCo, β'CoAl and β'NiAl , 1983 .

[77]  P. Trucano,et al.  Structure of graphite by neutron diffraction , 1975, Nature.

[78]  C. Swenson,et al.  Experimental equations of state for the rare gas solids , 1975 .

[79]  R. Fugate,et al.  Equation of state for solid neon to 20 kbar , 1973 .

[80]  M. Gupta,et al.  Thermal Expansion of CeO2, Ho2O3, and Lu2O3 from 100° to 300°K by an X‐Ray Method , 1970 .

[81]  D. K. Smith,et al.  Low-temperature thermal expansion of LiH, MgO and CaO , 1968 .

[82]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[83]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[84]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[85]  C. S. Barrett X‐ray study of the alkali metals at low temperatures , 1956 .

[86]  C. Kittel Introduction to solid state physics , 1954 .

[87]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[88]  Kevin Leung,et al.  Designing meaningful density functional theory calculations in materials science—a primer , 2004 .

[89]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[90]  John P. Perdew,et al.  Molecular and solid‐state tests of density functional approximations: LSD, GGAs, and meta‐GGAs , 1999 .

[91]  R. Parr Density-functional theory of atoms and molecules , 1989 .