Goos-Hänchen shift of Cosine-Gaussian Schell-model beams with rectangular symmetry

In this contribution we study the relation between the second order intensity moments and the Goos-Hänchen shift for partially coherent totally polarized beams. The results are applied to a type of partially coherent beams, the Cosine-Gaussian Schell-model beams with rectangular symmetry.

[1]  J. P. Woerdman,et al.  How orbital angular momentum affects beam shifts in optical reflection , 2010, 1003.0885.

[2]  R. Martínez-Herrero,et al.  Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams , 2008 .

[3]  F. Gori,et al.  Devising genuine spatial correlation functions. , 2007, Optics Letters.

[4]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[5]  K. Bliokh,et al.  Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. , 2006, Physical review letters.

[6]  On the spatial orientation of the transverse irradiance profile of partially coherent beams. , 2006, Optics express.

[7]  Olga Korotkova,et al.  Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. , 2014, Optics letters.

[8]  J. P. Woerdman,et al.  Spatial coherence and optical beam shifts. , 2012, Physical review letters.

[9]  J. P. Woerdman,et al.  Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. , 2008, Optics letters.

[10]  Beam Quality Dependence on the Coherence Length of Gaussian Schell-model fields Propagating Through ABCD Optical Systems , 1992 .

[11]  J. Galán,et al.  Parametric characterization of general partially coherent beams propagating through ABCD optical-systems , 1991 .

[12]  R. Martínez-Herrero,et al.  Radiometric definitions for partially coherent sources , 1984 .

[13]  E. Keren,et al.  Generalized beam parameters and transformation laws for partially coherent light. , 1988, Applied optics.

[14]  J. P. Woerdman,et al.  Observing angular deviations in the specular reflection of a light beam , 2009 .

[15]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[16]  Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  C. Imbert,et al.  Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam , 1972 .

[18]  Nicholas X. Fang,et al.  Large positive and negative lateral optical beam displacements due to surface plasmon resonance , 2004 .

[19]  A. Aiello,et al.  Role of spatial coherence in Goos-Hänchen and Imbert-Fedorov shifts. , 2011, Optics letters.

[20]  On the control of the spatial orientation of the transverse profile of a light beam. , 2006, Optics express.

[21]  A. Aiello Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective , 2012 .

[22]  R. Martínez-Herrero,et al.  Time-resolved spatial parametric characterization of pulsed light beams. , 1995, Optics Letters.

[23]  Ziauddin,et al.  Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials , 2016, Scientific Reports.

[24]  C. Prajapati,et al.  Goos-Hanchen and Imbert-Fedorov shifts for Hermite-Gauss beams. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  S. Leo,et al.  Closed-form expression for the Goos-Hänchen lateral displacement , 2016, 1602.01247.

[26]  H. Weber,et al.  On the different definitions of laser beam moments , 1993 .

[27]  F. Gori,et al.  Genuine cross-spectral densities and pseudo-modal expansions. , 2009, Optics letters.

[28]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[29]  S. A. Carvalho,et al.  Weak measurement of the composite Goos-Hänchen shift in the critical region. , 2016, Optics letters.

[30]  Rosario Martínez-Herrero,et al.  Beam characterization through active media , 1991 .