Goos-Hänchen shift of Cosine-Gaussian Schell-model beams with rectangular symmetry
暂无分享,去创建一个
M. A. Berbel | A. Cunillera | R. Martínez-Herrero | R. Martínez-Herrero | Miguel Angel Berbel | A. Cunillera
[1] J. P. Woerdman,et al. How orbital angular momentum affects beam shifts in optical reflection , 2010, 1003.0885.
[2] R. Martínez-Herrero,et al. Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams , 2008 .
[3] F. Gori,et al. Devising genuine spatial correlation functions. , 2007, Optics Letters.
[4] F. Goos,et al. Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .
[5] K. Bliokh,et al. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. , 2006, Physical review letters.
[6] On the spatial orientation of the transverse irradiance profile of partially coherent beams. , 2006, Optics express.
[7] Olga Korotkova,et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. , 2014, Optics letters.
[8] J. P. Woerdman,et al. Spatial coherence and optical beam shifts. , 2012, Physical review letters.
[9] J. P. Woerdman,et al. Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. , 2008, Optics letters.
[10] Beam Quality Dependence on the Coherence Length of Gaussian Schell-model fields Propagating Through ABCD Optical Systems , 1992 .
[11] J. Galán,et al. Parametric characterization of general partially coherent beams propagating through ABCD optical-systems , 1991 .
[12] R. Martínez-Herrero,et al. Radiometric definitions for partially coherent sources , 1984 .
[13] E. Keren,et al. Generalized beam parameters and transformation laws for partially coherent light. , 1988, Applied optics.
[14] J. P. Woerdman,et al. Observing angular deviations in the specular reflection of a light beam , 2009 .
[15] L. Mandel,et al. Optical Coherence and Quantum Optics , 1995 .
[16] Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] C. Imbert,et al. Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam , 1972 .
[18] Nicholas X. Fang,et al. Large positive and negative lateral optical beam displacements due to surface plasmon resonance , 2004 .
[19] A. Aiello,et al. Role of spatial coherence in Goos-Hänchen and Imbert-Fedorov shifts. , 2011, Optics letters.
[20] On the control of the spatial orientation of the transverse profile of a light beam. , 2006, Optics express.
[21] A. Aiello. Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective , 2012 .
[22] R. Martínez-Herrero,et al. Time-resolved spatial parametric characterization of pulsed light beams. , 1995, Optics Letters.
[23] Ziauddin,et al. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials , 2016, Scientific Reports.
[24] C. Prajapati,et al. Goos-Hanchen and Imbert-Fedorov shifts for Hermite-Gauss beams. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.
[25] S. Leo,et al. Closed-form expression for the Goos-Hänchen lateral displacement , 2016, 1602.01247.
[26] H. Weber,et al. On the different definitions of laser beam moments , 1993 .
[27] F. Gori,et al. Genuine cross-spectral densities and pseudo-modal expansions. , 2009, Optics letters.
[28] Onur Hosten,et al. Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.
[29] S. A. Carvalho,et al. Weak measurement of the composite Goos-Hänchen shift in the critical region. , 2016, Optics letters.
[30] Rosario Martínez-Herrero,et al. Beam characterization through active media , 1991 .