Computational Modeling of Tires

This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.

[1]  R. Abeyaratne,et al.  Cavitation in elastic and elastic-plastic solids , 1992 .

[2]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[3]  T. G. Ebbott An Application of Finite Element‐Based Fracture Mechanics Analysis to Cord‐Rubber Structures , 1996 .

[4]  Large Strain Viscoelastic Constitutive Models for Rubber, Part II: Determination of Material Constants , 1995 .

[5]  Theodosios Pavlidis,et al.  Algorithms for Shape Analysis of Contours and Waveforms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  E. A. Meinecke,et al.  Influence of Compression upon the Shear Properties of Bonded Rubber Blocks , 1980 .

[7]  J. L. Sanders,et al.  NONLINEAR THEORIES FOR THIN SHELLS , 1963 .

[8]  D. Parks,et al.  The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity , 1994 .

[9]  K. Bathe,et al.  Finite Element Methods for Nonlinear Problems , 1986 .

[10]  Rodney Alan Stephenson,et al.  The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials , 1982 .

[11]  W. W. Tworzydlo,et al.  A Thermomechanical Model to Predict the Temperature Distribution of Steady State Rolling Tires , 1993 .

[12]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[13]  Brooks A. Childers,et al.  Computer-aided light sheet flow visualization , 1993 .

[14]  Herbert Freeman Computer Processing of Line Drawings. , 1973 .

[15]  Ahmed K. Noor,et al.  Advances and trends in the development of computational models for tires , 1985 .

[16]  Christopher Bissell,et al.  Invention and technology , 1992 .

[17]  G. Fredrickson The theory of polymer dynamics , 1996 .

[18]  K. Sarkar,et al.  A New Approach for the Thermomechanical Analysis of Tires by the Finite Element Method , 1987 .

[19]  J. R. Luchini,et al.  Tire Rolling Loss Computation with the Finite Element Method , 1994 .

[20]  Arthur R. Johnson,et al.  Rubber Viscoelasticity Using the Physically Constrained System's Stretches as Internal Variables , 1993 .

[21]  Ahmed K. Noor,et al.  Analysis of aircraft tires via semianalytic finite elements , 1990 .

[22]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .

[23]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[24]  Theodosios Pavlidis,et al.  A review of algorithms for shape analysis , 1978 .

[25]  Bernard Budiansky,et al.  Notes on nonlinear shell theory. , 1968 .

[26]  Ahmed K. Noor,et al.  Nonlinear shell analysis via mixed isoparametric elements , 1977 .

[27]  P. Wriggers,et al.  Algorithms for non-linear contact constraints with application to stability problems of rods and shells , 1987 .

[28]  A. Johnson,et al.  A Viscohyperelastic Maxwell Model for Rubber Viscoelasticity , 1992 .

[29]  Peter Wriggers,et al.  Finite Element Postbuckling Analyis of Shells with Nonlinear Contact Constraints , 1986 .

[30]  Ahmed K. Noor,et al.  Exploiting symmetries in the modeling and analysis of tires , 1987 .

[31]  Joey Mead,et al.  Large Strain Viscoelastic Constitutive Models for Rubber, Part I: Formulations , 1994 .