Optimal conflict-avoiding codes of odd length and weight three
暂无分享,去创建一个
[1] James L. Massey,et al. The collision channel without feedback , 1985, IEEE Trans. Inf. Theory.
[2] Torleiv Kløve,et al. Some Codes Correcting Asymmetric Errors of Limited Magnitude , 2011, IEEE Transactions on Information Theory.
[3] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[4] Hung-Lin Fu,et al. Optimal Tight Equi‐Difference Conflict‐Avoiding Codes of Length n = 2k ± 1 and Weight 3 , 2013 .
[5] Joseph H. Silverman,et al. A Friendly Introduction to Number Theory , 1996 .
[6] Vladimir D. Tonchev,et al. On Conflict-Avoiding Codes of Length $n=4m$ for Three Active Users , 2007, IEEE Transactions on Information Theory.
[7] Meinard Müller,et al. Constant Weight Conflict-Avoiding Codes , 2007, SIAM J. Discret. Math..
[8] Peter Mathys,et al. A class of codes for a T active users out of N multiple-access communication system , 1990, IEEE Trans. Inf. Theory.
[9] Vladimir I. Levenshtein,et al. Conflict-avoiding codes and cyclic triple systems , 2007, Probl. Inf. Transm..
[10] Vladimir D. Tonchev,et al. Optimal conflict-avoiding codes for three active users , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[11] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[12] Koji Momihara,et al. Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three , 2007, Des. Codes Cryptogr..
[13] Hung-Lin Fu,et al. Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3 , 2009, Des. Codes Cryptogr..
[14] Kenneth W. Shum,et al. A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes , 2010, IEEE Transactions on Information Theory.
[15] Hung-Lin Fu,et al. Optimal Conflict-Avoiding Codes of Even Length and Weight 3 , 2010, IEEE Transactions on Information Theory.
[16] François G. Dorais,et al. A Wieferich Prime Search up to 6.7 × 10 15 , 2011 .
[17] Boris Tsybakov,et al. Some Constructions of Conflict-Avoiding Codes , 2002, Probl. Inf. Transm..
[18] Kenneth W. Shum,et al. A tight asymptotic bound on the size of constant-weight conflict-avoiding codes , 2010, Des. Codes Cryptogr..
[19] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[20] László Györfi,et al. Constructions of protocol sequences for multiple access collision channel without feedback , 1993, IEEE Trans. Inf. Theory.
[21] Torleiv Kløve,et al. Systematic, Single Limited Magnitude Error Correcting Codes for Flash Memories , 2011, IEEE Transactions on Information Theory.