Cell-Surface display of heterologous proteins: From high-throughput screening to environmental applications.

A variety of expression systems for the display of either short peptides or fully folded proteins on E.coli and, to a lesser extent, on Gram-positive bacteria have been developed. The expression of proteins on the surface of microbial cells has proved extremely important for numerous applications ranging from combinatorial library screening and protein engineering, to whole cell biocatalysts and adsorbants for bioremediation purposes.

[1]  B Westerlund-Wikström,et al.  Peptide display on bacterial flagella: principles and applications. , 2000, International journal of medical microbiology : IJMM.

[2]  A. Mulchandani,et al.  The use of live biocatalysts for pesticide detoxification. , 1998, Trends in biotechnology.

[3]  M. Zenk Heavy metal detoxification in higher plants--a review. , 1996, Gene.

[4]  G. Gadd,et al.  Microbial treatment of metal pollution--a working biotechnology? , 1993, Trends in biotechnology.

[5]  S. Brown,et al.  Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  A. Porter,et al.  Bacterial surface display of an anti‐pollutant antibody fragment , 1999, Letters in applied microbiology.

[7]  G. Georgiou,et al.  High-throughput screening of enzyme libraries. , 2000, Current opinion in biotechnology.

[8]  A Mulchandani,et al.  Cell Surface Display of Organophosphorus Hydrolase Using Ice Nucleation Protein , 2001, Biotechnology progress.

[9]  A. Christmann,et al.  The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides. , 1999, Protein engineering.

[10]  Yong-Sung Kim,et al.  Bacterial Cell Surface Display of an Enzyme Library for Selective Screening of Improved Cellulase Variants , 2000, Applied and Environmental Microbiology.

[11]  J. Mccoy,et al.  Expression of Thioredoxin Random Peptide Libraries on the Escherichia coli Cell Surface as Functional Fusions to Flagellin: A System Designed for Exploring Protein-Protein Interactions , 1995, Bio/Technology.

[12]  Christos Stathopoulos,et al.  Specific Adhesion and Hydrolysis of Cellulose by Intact Escherichia coli Expressing Surface Anchored Cellulase or Cellulose Binding Domains , 1993, Bio/Technology.

[13]  G. Georgiou Analysis of large libraries of protein mutants using flow cytometry. , 2000, Advances in protein chemistry.

[14]  Shi,et al.  Display of green fluorescent protein on Escherichia coli cell surface. , 2001, Enzyme and microbial technology.

[15]  A. Christmann,et al.  Display of Passenger Proteins on the Surface ofEscherichia coli K-12 by the Enterohemorrhagic E. coli Intimin EaeA , 2001, Journal of bacteriology.

[16]  A. Mulchandani,et al.  Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. , 2000, Biotechnology and bioengineering.

[17]  H. Wernérus,et al.  Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain. , 2001, FEMS microbiology letters.

[18]  C. Earhart Use of an Lpp-OmpA fusion vehicle for bacterial surface display. , 2000, Methods in enzymology.

[19]  Patrik Samuelson,et al.  Staphylococcal Surface Display of Metal-Binding Polyhistidyl Peptides , 2000, Applied and Environmental Microbiology.

[20]  M. Uhlén,et al.  Expression of recombinant proteins on the surface of the coagulase-negative bacterium Staphylococcus xylosus , 1992, Journal of bacteriology.

[21]  G. Georgiou,et al.  Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Georgiou,et al.  Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Uhlén,et al.  Surface display of functional fibronectin‐binding domains on Staphylococcus carnosus , 1999, FEBS letters.

[24]  Ashok Mulchandani,et al.  Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase , 1997, Nature Biotechnology.

[25]  T. Vernet,et al.  A family of yeast expression vectors containing the phage f1 intergenic region. , 1987, Gene.

[26]  M. Westermann,et al.  Novel Bacterial Membrane Surface Display System Using Cell Wall-Less L-Forms of Proteus mirabilis and Escherichia coli , 2002, Applied and Environmental Microbiology.

[27]  V. Lorenzo,et al.  Enhanced metalloadsorption of bacterial cells displaying poly-His peptides , 1996, Nature Biotechnology.

[28]  O. Schneewind,et al.  Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. , 1995, Science.

[29]  Christos Stathopoulos,et al.  Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines , 1997, Nature Biotechnology.

[30]  M. Uhlén,et al.  Flow cytometric quantification of surface-displayed recombinant receptors on staphylococci. , 1997, BioTechniques.

[31]  V. Lorenzo,et al.  Bioaccumulation of heavy metals with protein fusions of metallothionein to bacteriol OMPs , 1998 .

[32]  Mark J. Olsen,et al.  Function-based isolation of novel enzymes from a large library , 2000, Nature Biotechnology.

[33]  R. Brousseau,et al.  Expression of a Neurospora crassa metallothionein and its variants in Escherichia coli , 1990, Applied and environmental microbiology.

[34]  A Mulchandani,et al.  Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. , 2001, Biotechnology and bioengineering.

[35]  G. Georgiou,et al.  Antibody affinity maturation using bacterial surface display. , 1998, Protein engineering.

[36]  M. Uhlén,et al.  Surface display of a functional single-chain Fv antibody on staphylococci , 1996, Journal of bacteriology.

[37]  S. Yoo,et al.  Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleation protein. , 2001, Enzyme and microbial technology.

[38]  A. Meinke,et al.  Bacterial Phage Receptors, Versatile Tools for Display of Polypeptides on the Cell Surface , 2001, Journal of bacteriology.

[39]  Ashok Mulchandani,et al.  Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. , 2002, Journal of inorganic biochemistry.

[40]  K D Wittrup,et al.  Protein engineering by cell-surface display. , 2001, Current opinion in biotechnology.

[41]  Wilfred Chen,et al.  Bacterial Cell Surface Display of Organophosphorus Hydrolase for Selective Screening of Improved Hydrolysis of Organophosphate Nerve Agents , 2002, Applied and Environmental Microbiology.

[42]  A. Mulchandani,et al.  Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. , 1999, Biotechnology and bioengineering.

[43]  G. Georgiou,et al.  Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Lo,et al.  Expression of foreign antigens on the surface of Escherichia coli by fusion to the outer membrane protein traT. , 1999, Journal of biomedical science.

[45]  Chul-Joong Kim,et al.  Surface-displayed viral antigens on Salmonella carrier vaccine , 2000, Nature Biotechnology.

[46]  V. de Lorenzo,et al.  Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs. , 1998, Biochimie.

[47]  T. Meyer,et al.  Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli , 1997, Journal of bacteriology.

[48]  Candace S. Johnson,et al.  A Novel Approach for the Identification of Unique Tumor Vasculature Binding Peptides Using an E. coli Peptide Display Library , 2000, Annals of Surgical Oncology.

[49]  M. Uhlén,et al.  Cell surface display of recombinant proteins on Staphylococcus carnosus , 1995, Journal of bacteriology.

[50]  V. Lorenzo,et al.  Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil , 2000, Nature Biotechnology.

[51]  M. Mäki,et al.  Characterization of adhesive epitopes with the OmpS display system. , 2000, European journal of biochemistry.

[52]  Sang Yup Lee,et al.  Display of Polyhistidine Peptides on theEscherichia coli Cell Surface by Using Outer Membrane Protein C as an Anchoring Motif , 1999, Applied and Environmental Microbiology.

[53]  W. Fiers,et al.  Functional Display of a Heterologous Protein on the Surface of Lactococcus lactis by Means of the Cell Wall Anchor of Staphylococcus aureus Protein A , 1998, Applied and Environmental Microbiology.

[54]  G. Georgiou,et al.  Flow cytometric screening of cell-based libraries. , 2000, Journal of immunological methods.

[55]  H Lång,et al.  Outer membrane proteins as surface display systems. , 2000, International journal of medical microbiology : IJMM.

[56]  D. Munnecke,et al.  Pathways of microbial metabolism of parathion , 1976, Applied and environmental microbiology.

[57]  L. Bülow,et al.  Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. , 1998, Protein engineering.

[58]  M. Schembri,et al.  Bioaccumulation of heavy metals by fimbrial designer adhesins. , 1999, FEMS microbiology letters.

[59]  Timo K. Korhonen,et al.  Construction of a Multihybrid Display System: Flagellar Filaments Carrying Two Foreign Adhesive Peptides , 2000, Applied and Environmental Microbiology.

[60]  T. Meyer,et al.  Autodisplay: Functional Display of Active β-Lactamase on the Surface of Escherichia coli by the AIDA-I Autotransporter , 2000, Journal of bacteriology.

[61]  Ligand-Mediated Protection against Phage Lysis as a Positive Selection Strategy for the Enrichment of Epitopes Displayed on the Surface of E. coli Cells , 2001, Biological chemistry.

[62]  M. Uhlén,et al.  Affinity maturation of a Taq DNA polymerase specific affibody by helix shuffling. , 1999, Protein engineering.

[63]  M. Uhlén,et al.  Cell-surface display of heterologous epitopes on Staphylococcus xylosus as a potential delivery system for oral vaccination. , 1993, Gene.

[64]  P. A. Rea,et al.  AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  V. de Lorenzo,et al.  Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. , 2000, Journal of inorganic biochemistry.

[66]  A. Christmann,et al.  Sequence Requirements of the GPNG β-Turn of the Ecballium elaterium Trypsin Inhibitor II Explored by Combinatorial Library Screening* , 1999, The Journal of Biological Chemistry.

[67]  A. Christmann,et al.  Epitope mapping and affinity purification of monospecific antibodies by Escherichia coli cell surface display of gene-derived random peptide libraries. , 2001, Journal of immunological methods.

[68]  T. Ferenci,et al.  Directed evolution of the lambda receptor of Escherichia coli through affinity chromatographic selection. , 1982, Journal of molecular biology.

[69]  V. de Lorenzo,et al.  Metalloadsorption by Escherichia coliCells Displaying Yeast and Mammalian Metallothioneins Anchored to the Outer Membrane Protein LamB , 1998, Journal of bacteriology.

[70]  J. Mccoy,et al.  Investigation of the 'switch-epitope' concept with random peptide libraries displayed as thioredoxin loop fusions. , 2001, Protein engineering.

[71]  B. Gaber,et al.  Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake , 1995, Applied Microbiology and Biotechnology.

[72]  G. Georgiou,et al.  High-throughput antibody isolation. , 2001, Current opinion in chemical biology.

[73]  J. Lebeault,et al.  Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae , 1998, Nature Biotechnology.

[74]  J. Nriagu,et al.  Quantitative assessment of worldwide contamination of air, water and soils by trace metals , 1988, Nature.

[75]  M. Uhlén,et al.  An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. , 1999, Immunotechnology : an international journal of immunological engineering.

[76]  M. Uhlén,et al.  Bacterial surface display: trends and progress. , 1997, Trends in biotechnology.

[77]  M. Uhlén,et al.  Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. , 1997, Nature biotechnology.

[78]  I. Benhar,et al.  Highly efficient selection of phage antibodies mediated by display of antigen as Lpp-OmpA' fusions on live bacteria. , 2000, Journal of molecular biology.

[79]  F. Jähnig,et al.  Common structural features of IgA1 protease‐like outer membrane protein autotransporters , 1995, Molecular microbiology.

[80]  F. Götz,et al.  In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus , 1996, Molecular microbiology.

[81]  Wilfred Chen,et al.  Specific Adhesion to Cellulose and Hydrolysis of Organophosphate Nerve Agents by a Genetically Engineered Escherichia coli Strain with a Surface-Expressed Cellulose-Binding Domain and Organophosphorus Hydrolase , 2002, Applied and Environmental Microbiology.

[82]  V. de Lorenzo,et al.  Enhanced Bioaccumulation of Heavy Metal Ions by Bacterial Cells Due to Surface Display of Short Metal Binding Peptides , 1999, Applied and Environmental Microbiology.

[83]  Wilfred Chen,et al.  Genetic Engineering of Escherichia coli for Enhanced Uptake and Bioaccumulation of Mercury , 2001, Applied and Environmental Microbiology.

[84]  J. Bardwell,et al.  Building bridges: disulphide bond formation in the cell , 1994, Molecular microbiology.