A one-dimensional inverse problem in composite materials: Regularization and error estimates

Abstract In this paper we investigate an inverse one-dimensional heat conduction problem in multi-layer medium. The inverse problem is first formulated in the frequency domain via Fourier transform technique. An effective regularization method for the stable reconstruction of solution is given with proven error estimates. Several numerical examples are constructed to demonstrate the effectiveness of the proposed method.

[1]  Murray Imber,et al.  Temperature Extrapolation Mechanism for Two-Dimensional Heat Flow , 1974 .

[3]  A. Haji-sheikh,et al.  Estimation of thermophysical properties of composites using multi-parameter estimation and zeroth-order regularization , 2001 .

[4]  Fredrik Berntsson,et al.  Wavelet and Fourier Methods for Solving the Sideways Heat Equation , 1999, SIAM J. Sci. Comput..

[5]  T. Wei,et al.  Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation , 2009 .

[6]  H. S. Sidhu,et al.  Finite difference schemes for multilayer diffusion , 2011, Math. Comput. Model..

[7]  Y. Liu,et al.  Numerical experiments in 2-D IHCP on bounded domains Part I: The “interior” cube problem , 1996 .

[8]  L. Eldén,et al.  Hyperbolic approximations for a Cauchy problem for the heat equation , 1988 .

[9]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[10]  T. Yoshimura,et al.  Inverse heat-conduction problem by finite-element formulation , 1985 .

[11]  D. Hào,et al.  A mollification method for ill-posed problems , 1994 .

[12]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[13]  Chu-Li Fu,et al.  Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation , 2004 .

[14]  Diego A. Murio,et al.  A mollified space marching finite differences algorithm for the inverse heat conduction problem with slab symmetry , 1990 .

[15]  J. Beck Nonlinear estimation applied to the nonlinear inverse heat conduction problem , 1970 .

[16]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[17]  Lijia Guo,et al.  A mollified space-marching finite-different algorithm for the two-dimensional inverse heat conduction problem with slab symmetry , 1991 .

[18]  Lars Eldén,et al.  Approximations for a Cauchy problem for the heat equation , 1987 .

[19]  N. Zabaras,et al.  AN ANALYSIS OF TWO-DIMENSIONAL LINEAR INVERSE HEAT TRANSFER PROBLEMS USING AN INTEGRAL METHOD , 1988 .

[20]  T. Wei,et al.  An inverse boundary problem for one-dimensional heat equation with a multilayer domain ☆ , 2009 .

[21]  T. Wei,et al.  Identification of a moving boundary for a heat conduction problem in a multilayer medium , 2010 .

[22]  Hans-Jürgen Reinhardt,et al.  On a sideways parabolic equation , 1997 .

[23]  Fredrik Berntsson,et al.  A spectral method for solving the sideways heat equation , 1999 .

[24]  Dinh Nho Hào,et al.  Methods for inverse heat conduction problems , 1998 .

[25]  T. Wei,et al.  Uniqueness of moving boundary for a heat conduction problem with nonlinear interface conditions , 2010, Appl. Math. Lett..

[26]  Lars Eldén,et al.  Numerical solution of the sideways heat equation by difference approximation in time , 1995 .

[27]  Charles F. Weber,et al.  Analysis and solution of the ill-posed inverse heat conduction problem , 1981 .

[28]  Diego A. Murio,et al.  Stable numerical solution of a fractional-diffusion inverse heat conduction problem , 2007, Comput. Math. Appl..

[29]  A. Haji-sheikh,et al.  Exact Solution of Heat Conduction in Composite Materials and Application to Inverse Problems , 1997, Heat Transfer: Volume 1.

[30]  Y. Hon,et al.  Regularization error analysis on a one-dimensional inverse heat conduction problem in multilayer domain , 2013 .

[31]  Y. Hon,et al.  The method of fundamental solution for solving multidimensional inverse heat conduction problems , 2005 .

[32]  A. Carasso Determining Surface Temperatures from Interior Observations , 1982 .