Preparation, characterisation and in vitro and in vivo evaluation of CD44-targeted chondroitin sulphate-conjugated doxorubicin PLGA nanoparticles.

[1]  Tong Zhang,et al.  Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery , 2018, International journal of nanomedicine.

[2]  A. Iyer,et al.  CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. , 2018, Nanomedicine : nanotechnology, biology, and medicine.

[3]  P. Mishra,et al.  Multifunctional Glycoconjugate Assisted Nanocrystalline Drug Delivery for Tumor Targeting and Permeabilization of Lysosomal-Mitochondrial Membrane. , 2018, ACS applied materials & interfaces.

[4]  M. Seno,et al.  Targeting Glioblastoma Cells Expressing CD44 with Liposomes Encapsulating Doxorubicin and Displaying Chlorotoxin-IgG Fc Fusion Protein , 2018, International journal of molecular sciences.

[5]  H. Ahmad,et al.  CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. , 2018, Nanomedicine : nanotechnology, biology, and medicine.

[6]  Kristina M. Ilieva,et al.  Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types , 2018, Front. Immunol..

[7]  Wei Zhang,et al.  Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. , 2017, Acta biomaterialia.

[8]  Yuang Ding,et al.  In vivo study of doxorubicin-loaded cell-penetrating peptide-modified pH-sensitive liposomes: biocompatibility, bio-distribution, and pharmacodynamics in BALB/c nude mice bearing human breast tumors , 2017, Drug design, development and therapy.

[9]  G. Botchkina,et al.  Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth. , 2017, Cancer letters.

[10]  Shuiqing Huang,et al.  Akkermansia muciniphila May Determine Chondroitin Sulfate Ameliorating or Aggravating Osteoarthritis , 2017, Front. Microbiol..

[11]  P. Vavia,et al.  In Vivo Anticancer Efficacy and Toxicity Studies of a Novel Polymer Conjugate N-Acetyl Glucosamine (NAG)–PEG–Doxorubicin for Targeted Cancer Therapy , 2017, AAPS PharmSciTech.

[12]  P. Kesharwani,et al.  Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting. , 2017, Biomacromolecules.

[13]  Amit Kumar,et al.  Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells , 2017, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  V. Orian-Rousseau,et al.  CD44: More than a mere stem cell marker. , 2016, The international journal of biochemistry & cell biology.

[15]  Q. Zhang,et al.  Effect of α-linolenic acid-modified low molecular weight chondroitin sulfate on atherosclerosis in apoE-deficient mice. , 2016, Biochimica et biophysica acta.

[16]  C. Cai,et al.  In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa , 2016, Molecules.

[17]  R. Haag,et al.  Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. , 2016, Biomaterials.

[18]  Chuanxia Ju,et al.  Anti-oxidation and Antiapoptotic Effects of Chondroitin Sulfate on 6-Hydroxydopamine-Induced Injury Through the Up-Regulation of Nrf2 and Inhibition of Mitochondria-Mediated Pathway , 2015, Neurochemical Research.

[19]  Nawwaf S. Basakran CD44 as a potential diagnostic tumor marker , 2015, Saudi medical journal.

[20]  A. Haeri,et al.  A Simple and Sensitive HPLC Method for Fluorescence Quantitation of Doxorubicin in Micro-volume Plasma: Applications to Pharmacokinetic Studies in Rats , 2015, Iranian journal of pharmaceutical research : IJPR.

[21]  H. Hosseinkhani,et al.  Characterization and anti-tumor effects of chondroitin sulfate–chitosan nanoparticles delivery system , 2014, Journal of Nanoparticle Research.

[22]  Y. Jeong,et al.  Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide) Copolymer for Tumor Targeting , 2014, International journal of molecular sciences.

[23]  Q. Zhang,et al.  Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates. , 2014, International journal of pharmaceutics.

[24]  J. Varshosaz,et al.  Evaluating Cytotoxicity of Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide on SK-OV-3 Cells , 2014, Journal of drug delivery.

[25]  Rajesh S. Omtri,et al.  Differences in the cellular uptake and intracellular itineraries of amyloid beta proteins 40 and 42: ramifications for the Alzheimer's drug discovery. , 2012, Molecular pharmaceutics.

[26]  Y. Kuo,et al.  Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. , 2011, Nanomedicine.

[27]  Si-Shen Feng,et al.  Formulation of Docetaxel by folic acid-conjugated d-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS(2k)) micelles for targeted and synergistic chemotherapy. , 2011, Biomaterials.

[28]  K. Kang,et al.  Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin , 2011, Archives of pharmacal research.

[29]  Kit S Lam,et al.  The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. , 2011, Biomaterials.

[30]  Qiang Zhang,et al.  Preparation and characterizations of a novel deoxycholic acid–O-carboxymethylated chitosan–folic acid conjugates and self-aggregates , 2011 .

[31]  Lingrong Liu,et al.  High-Yield Fabrication of PLGA Non-Spherical Microarchitectures by Emulsion-Solvent Evaporation Method. , 2010, Macromolecular rapid communications.

[32]  E. Di Fabrizio,et al.  FT‐IR, Raman, RRS measurements and DFT calculation for doxorubicin , 2010, Microscopy research and technique.

[33]  J. Cuevas,et al.  Effectiveness of chondroitin sulphate in patients with concomitant knee osteoarthritis and psoriasis: a randomized, double-blind, placebo-controlled study. , 2010, Osteoarthritis and cartilage.

[34]  Norman Honbo,et al.  Doxorubicin Cardiomyopathy , 2009, Cardiology.

[35]  T. Ishida,et al.  Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. , 2008, International journal of pharmaceutics.

[36]  V. Torchilin Targeted pharmaceutical nanocarriers for cancer therapy and imaging , 2007, The AAPS Journal.

[37]  É. Cavalheiro,et al.  The use of DSC curves to determine the acetylation degree of chitin/chitosan samples , 2006 .

[38]  R K Jain,et al.  Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. , 1995, Cancer research.

[39]  J. Kratohvil,et al.  How large are the micelles of di-α-hydroxy bile salts at the critical micellization concentrations in aqueous electrolyte solutions? Results for sodium taurodeoxycholate and sodium deoxycholate , 1986 .

[40]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[41]  A. Rahman,et al.  Effect of pH on the critical micelle concentration of sodium dodecyl sulphate , 1983 .

[42]  Lee Hj,et al.  Effects of dexamethasone on the pharmacokinetics of adriamycin after intravenous administration to rats. , 1999 .

[43]  H. J. Lee,et al.  Effects of dexamethasone on the pharmacokinetics of adriamycin after intravenous administration to rats. , 1999, Research communications in molecular pathology and pharmacology.