Towards commercialization: the operational stability of perovskite solar cells.

Recently, perovskite solar cells (PSCs) have attracted much attention owing to their high power conversion efficiency (25.2%) and low fabrication cost. However, the short lifetime under operation is the major obstacle for their commercialization. With efforts from the entire PSC research community, significant advances have been witnessed to improve the device operational stability, and a timely summary on the progress is urgently needed. In this review, we first clarify the definition of operational stability and its significance in the context of practical use. By analyzing the mechanisms in established approaches for operational stability improvement, we summarize several effective strategies to extend device lifetime in a layer-by-layer sequence across the entire PSC. These mechanisms are discussed in the contexts of chemical reactions, photo-physical management, technological modification, etc., which may inspire future R&D for stable PSCs. Finally, emerging operational stability standards with respect to testing and reporting device operational stability are summarized and discussed, which may help reliable device stability data circulate in the research community. The main target of this review is gaining insight into the operational stability of PSCs, as well as providing useful guidance to further improve their operational lifetime by rational materials processing and device fabrication, which would finally promote the commercialization of perovskite solar cells.

[1]  Rishi E. Kumar,et al.  Microscopic Degradation in Formamidinium-Cesium Lead Iodide Perovskite Solar Cells under Operational Stressors , 2020 .

[2]  J. Y. Kim,et al.  Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells , 2020 .

[3]  Zhiwen Qiu,et al.  Recent Advances in Improving Phase Stability of Perovskite Solar Cells , 2020 .

[4]  Yujing Li,et al.  Promoting thermodynamic and kinetic stabilities of FA-based perovskite by in-situ bilayer structure. , 2020, Nano letters.

[5]  Duncan N. Johnstone,et al.  Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites , 2020, Nature.

[6]  Andrew H. Proppe,et al.  Regulating strain in perovskite thin films through charge-transport layers , 2020, Nature Communications.

[7]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[8]  Hongwei Zhu,et al.  Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency , 2020, Advanced materials.

[9]  T. Xu,et al.  On-device lead sequestration for perovskite solar cells , 2020, Nature.

[10]  Yongli Gao,et al.  Energy‐Level Modulation in Diboron‐Modified SnO 2 for High‐Efficiency Perovskite Solar Cells , 2020, Solar RRL.

[11]  Sai Ma,et al.  1000 h Operational Lifetime Perovskite Solar Cells by Ambient Melting Encapsulation , 2020, Advanced Energy Materials.

[12]  P. Joskow Transmission Capacity Expansion Is Needed to Decarbonize the Electricity Sector Efficiently , 2020 .

[13]  Xiaodang Zhang,et al.  NiOx/Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21% , 2020 .

[14]  S. Pang,et al.  Highly efficient inverted hole-transport-layer-free perovskite solar cells , 2020 .

[15]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[16]  Yang Yang,et al.  Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics , 2019, Science.

[17]  Dongsheng Xu,et al.  Enhanced Lifetime and Photostability with Low-temperature Mesoporous ZnTiO3/Compact SnO2 Electrodes in Perovskite Solar Cells. , 2019, Angewandte Chemie.

[18]  Jun Hee Lee,et al.  Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide , 2019, Science.

[19]  Huanping Zhou,et al.  The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells , 2019, Advanced Energy Materials.

[20]  Pengwan Chen,et al.  Interfacial Residual Stress Relaxation in Perovskite Solar Cells with Improved Stability , 2019, Advanced materials.

[21]  Peng Wang,et al.  Double-Helicene-Based Hole-Transporter for Perovskite Solar Cells with 22% Efficiency and Operation Durability , 2019, ACS Energy Letters.

[22]  Essa A. Alharbi,et al.  Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multi-Nuclear and Two-Dimensional Solid-State NMR. , 2019, Journal of the American Chemical Society.

[23]  Anders Hagfeldt,et al.  A chain is as strong as its weakest link – Stability study of MAPbI3 under light and temperature , 2019, Materials Today.

[24]  Jia Zhu,et al.  Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink , 2019, Nature Energy.

[25]  Dong Suk Kim,et al.  Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells , 2019, Joule.

[26]  Xue Zhou,et al.  Doping amino-functionalized ionic liquid in perovskite crystal for enhancing performances of hole-conductor free solar cells with carbon electrode , 2019, Chemical Engineering Journal.

[27]  Liyuan Han,et al.  Stabilizing heterostructures of soft perovskite semiconductors , 2019, Science.

[28]  Y. Qi,et al.  Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18% , 2019, Science.

[29]  Xun Xiao,et al.  Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts , 2019, Science.

[30]  X. Wen,et al.  LiTFSI‐Free Spiro‐OMeTAD‐Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19% , 2019, Advanced Energy Materials.

[31]  Jinsong Huang,et al.  Imperfections and their passivation in halide perovskite solar cells. , 2019, Chemical Society reviews.

[32]  A. Djurišić,et al.  Dopant‐Free Small‐Molecule Hole‐Transporting Material for Inverted Perovskite Solar Cells with Efficiency Exceeding 21% , 2019, Advanced materials.

[33]  Seong Sik Shin,et al.  An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss , 2019, Energy & Environmental Science.

[34]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[35]  Zhanhao Hu,et al.  Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation , 2019, Nature Energy.

[36]  M. Yanagida,et al.  Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000 h , 2019, Solar Energy Materials and Solar Cells.

[37]  Yiliang Wu,et al.  30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homo‐Tandem Structures , 2019, Solar RRL.

[38]  Yang Yang,et al.  Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells , 2019, Joule.

[39]  M. Grätzel,et al.  Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% , 2019, Science Advances.

[40]  E. Nakamura,et al.  Organic/Inorganic Hybrid p-Type Semiconductor Doping Affords Hole Transporting Layer Free Thin-Film Perovskite Solar Cells with High Stability. , 2019, ACS applied materials & interfaces.

[41]  Yiping Guo,et al.  Trap-State Passivation by Nonvolatile Small Molecules with Carboxylic Acid Groups for Efficient Planar Perovskite Solar Cells , 2019, The Journal of Physical Chemistry C.

[42]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[43]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[44]  Ligang Wang,et al.  A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells , 2019, Advanced materials.

[45]  Anuj Kumar Goyal,et al.  Insights into operational stability and processing of halide perovskite active layers , 2019, Energy & Environmental Science.

[46]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[47]  Yujing Li,et al.  Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics , 2019, Journal of Materials Chemistry A.

[48]  Jinsong Huang,et al.  Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[49]  Jianhua Xu,et al.  Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. , 2019, ACS applied materials & interfaces.

[50]  L. Li,et al.  Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells , 2019, Nature Communications.

[51]  Jinsong Huang,et al.  Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells , 2019, Science Advances.

[52]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[53]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[54]  W. Choy,et al.  Water‐Soluble Triazolium Ionic‐Liquid‐Induced Surface Self‐Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells , 2019, Advanced Functional Materials.

[55]  G. Brocks,et al.  Absolute energy level positions in tin- and lead-based halide perovskites , 2019, Nature Communications.

[56]  S. Seok,et al.  Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials , 2019, Advanced materials.

[57]  B. Wei,et al.  Surface & grain boundary co-passivation by fluorocarbon based bifunctional molecules for perovskite solar cells with efficiency over 21% , 2019, Journal of Materials Chemistry A.

[58]  Yujing Li,et al.  A Strategy toward New Low-Dimensional Hybrid Halide Perovskites with Anionic Spacers. , 2019, Small.

[59]  L. Qiu,et al.  Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface , 2019, Advanced materials.

[60]  Ligang Wang,et al.  A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells , 2019, Science.

[61]  M. Grätzel,et al.  Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells , 2019, Joule.

[62]  P. Liu,et al.  Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells , 2018, Advanced Energy Materials.

[63]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[64]  Jinsong Huang,et al.  Organohalide Lead Perovskites: More Stable than Glass under Gamma‐Ray Radiation , 2018, Advanced materials.

[65]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[66]  S. Zakeeruddin,et al.  Synergistic Crystal and Interface Engineering for Efficient and Stable Perovskite Photovoltaics , 2018, Advanced Energy Materials.

[67]  Michael Saliba,et al.  A full overview of international standards assessing the long-term stability of perovskite solar cells , 2018, Journal of Materials Chemistry A.

[68]  Jinsong Huang,et al.  Excess charge-carrier induced instability of hybrid perovskites , 2018, Nature Communications.

[69]  Kang L. Wang,et al.  All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15% , 2018, Nature Communications.

[70]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[71]  K. Catchpole,et al.  A Universal Double‐Side Passivation for High Open‐Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate) , 2018, Advanced Energy Materials.

[72]  A. Petrozza,et al.  Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film , 2018 .

[73]  Haoran Jiang,et al.  Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells , 2018, Nano Energy.

[74]  Jihuai Wu,et al.  Pyridine solvent engineering for high quality anion-cation-mixed hybrid and high performance of perovskite solar cells , 2018, Journal of Power Sources.

[75]  Yongsheng Chen,et al.  Two-Dimensional Ruddlesden-Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15. , 2018, Journal of the American Chemical Society.

[76]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[77]  Michael Grätzel,et al.  Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment , 2018 .

[78]  Joseph J. Berry,et al.  Stability in Perovskite Photovoltaics: A Paradigm for Newfangled Technologies , 2018, ACS Energy Letters.

[79]  Yujing Li,et al.  Cost Analysis of Perovskite Tandem Photovoltaics , 2018, Joule.

[80]  Chunhui Huang,et al.  Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification , 2018, Solar RRL.

[81]  Jeffrey A. Christians,et al.  Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. , 2018, ACS applied materials & interfaces.

[82]  Jinsong Hu,et al.  Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade , 2018, Nature Communications.

[83]  R. Quintero‐Bermudez,et al.  Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air , 2018, Nature Energy.

[84]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[85]  W. Choy,et al.  Crystallization, Properties, and Challenges of Low-Bandgap Sn-Pb Binary Perovskites , 2018, Solar RRL.

[86]  S. Zakeeruddin,et al.  Adamantanes Enhance the Photovoltaic Performance and Operational Stability of Perovskite Solar Cells by Effective Mitigation of Interfacial Defect States , 2018 .

[87]  Wen‐Bin Zhang,et al.  Efficient Moisture-Resistant Perovskite Solar Cell With Nanostructure Featuring 3D Amine Motif , 2018, Solar RRL.

[88]  Dieter Neher,et al.  Measuring Aging Stability of Perovskite Solar Cells , 2018 .

[89]  P. Heremans,et al.  Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells , 2018 .

[90]  Jiantie Xu,et al.  Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. , 2018, Chemical Society reviews.

[91]  Michael F Toney,et al.  Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites. , 2018, The journal of physical chemistry letters.

[92]  Pengfei Liu,et al.  Grain‐Boundary “Patches” by In Situ Conversion to Enhance Perovskite Solar Cells Stability , 2018, Advanced materials.

[93]  Peter Hacke,et al.  Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards , 2018, Nature Energy.

[94]  Ruixin Ma,et al.  High‐Performance Perovskite Solar Cells with Large Grain‐Size obtained by using the Lewis Acid‐Base Adduct of Thiourea , 2018 .

[95]  B. Dunn,et al.  Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. , 2018, Journal of the American Chemical Society.

[96]  Wen‐Bin Zhang,et al.  Extremely low trap-state energy level perovskite solar cells passivated using NH2-POSS with improved efficiency and stability , 2018 .

[97]  Uli Lemmer,et al.  Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[98]  Jinsong Huang,et al.  Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells , 2018, Nature Communications.

[99]  Peter Lund,et al.  Critical analysis on the quality of stability studies of perovskite and dye solar cells , 2018 .

[100]  Jiangyu Li,et al.  Facile surface modification of CH3NH3PbI3 films leading to simultaneously improved efficiency and stability of inverted perovskite solar cells , 2018 .

[101]  Olivier Durand,et al.  Light-induced lattice expansion leads to high-efficiency perovskite solar cells , 2018, Science.

[102]  E. Kymakis,et al.  Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer , 2018 .

[103]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[104]  M. Grätzel,et al.  Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition , 2018, Nature Materials.

[105]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[106]  Federico Bella,et al.  Perovskite Solar Cells: From the Laboratory to the Assembly Line. , 2018, Chemistry.

[107]  Qing Zhang,et al.  Unraveling the Growth of Hierarchical Quasi-2D/3D Perovskite and Carrier Dynamics. , 2018, The journal of physical chemistry letters.

[108]  X. Hou,et al.  Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells , 2018 .

[109]  Xiang Wu,et al.  Jahn-Teller Effect on Framework Flexibility of Hybrid Organic-Inorganic Perovskites. , 2018, The journal of physical chemistry letters.

[110]  Michael Saliba,et al.  Perovskite solar cells must come of age , 2018, Science.

[111]  Jinsong Huang,et al.  Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. , 2018, The journal of physical chemistry letters.

[112]  Seonhee Lee,et al.  Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. , 2018, Journal of the American Chemical Society.

[113]  T. Hayat,et al.  Incorporating 4-tert-Butylpyridine in an Antisolvent: A Facile Approach to Obtain Highly Efficient and Stable Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[114]  Na Liu,et al.  Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. , 2018, Journal of the American Chemical Society.

[115]  Wasim J. Mir,et al.  Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? , 2018 .

[116]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[117]  R. Ahuja,et al.  Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy: Variation with Photon Energy , 2017 .

[118]  W. Goddard,et al.  Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates , 2017 .

[119]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[120]  Filippo De Angelis,et al.  Perovskite Solar Cells on Their Way to the Market , 2017 .

[121]  Jinsong Huang,et al.  Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells , 2017, Science Advances.

[122]  Jingjing Zhao,et al.  Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films , 2017 .

[123]  G. Boschloo,et al.  Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells , 2017, ACS applied materials & interfaces.

[124]  Yongzhen Wu,et al.  Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells , 2017 .

[125]  M. Grätzel,et al.  Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1–xPbI3 Hybrid Perovskites from Solid-State NMR , 2017, Journal of the American Chemical Society.

[126]  P. Lund,et al.  Device stability of perovskite solar cells – A review , 2017 .

[127]  M. Nazeeruddin,et al.  A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquid‐Dopants , 2017, Advanced materials.

[128]  A. Jen,et al.  Molecular Engineered Hole‐Extraction Materials to Enable Dopant‐Free, Efficient p‐i‐n Perovskite Solar Cells , 2017 .

[129]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[130]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[131]  Dane W. deQuilettes,et al.  Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells , 2017, Science Advances.

[132]  Zhiqiang Feng,et al.  Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. , 2017, ACS applied materials & interfaces.

[133]  Bingqiang Cao,et al.  Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency , 2017 .

[134]  H. Lee,et al.  Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis , 2017, Scientific Reports.

[135]  Yin Xiao,et al.  Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air , 2017 .

[136]  Jinsong Huang,et al.  Understanding the physical properties of hybrid perovskites for photovoltaic applications , 2017 .

[137]  Guangda Niu,et al.  Inorganic CsPbI3 Perovskite‐Based Solar Cells: A Choice for a Tandem Device , 2017 .

[138]  Dong-Won Kang,et al.  Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine. , 2017, ACS applied materials & interfaces.

[139]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[140]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[141]  Ilke Celik,et al.  A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques , 2017 .

[142]  Yu Lin,et al.  Halide Perovskites under Pressure: Accessing New Properties through Lattice Compression , 2017 .

[143]  Qi Chen,et al.  Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells , 2017, Advanced materials.

[144]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[145]  Satyaprasad P. Senanayak,et al.  Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films , 2017 .

[146]  S. Haque,et al.  Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells , 2017, Nature Communications.

[147]  Wenjun Zhang,et al.  Fullerene-Free Organic Solar Cells with Efficiency Over 12% Based on EDTA-ZnO Hybrid Cathode Interlayer , 2017 .

[148]  Tejas S. Sherkar,et al.  Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions , 2017, ACS energy letters.

[149]  S. Zakeeruddin,et al.  Isomer‐Pure Bis‐PCBM‐Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability , 2017, Advanced materials.

[150]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[151]  Yi-bing Cheng,et al.  Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells , 2017 .

[152]  M. Wasielewski,et al.  Enhanced Efficiency of Hot‐Cast Large‐Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation , 2017 .

[153]  M. Green,et al.  An effective method of predicting perovskite solar cell lifetime–Case study on planar CH3NH3PbI3 and HC(NH2)2PbI3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA , 2017 .

[154]  J. Spanier,et al.  Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide. , 2017, The journal of physical chemistry letters.

[155]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[156]  Michael D. McGehee,et al.  Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics , 2017, Advanced materials.

[157]  Dongsheng Xu,et al.  Quantitative Doping of Chlorine in Formamidinium Lead Trihalide (FAPbI3−xClx) for Planar Heterojunction Perovskite Solar Cells , 2017 .

[158]  N. Park,et al.  Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[159]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[160]  Jae Hoon Yun,et al.  Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[161]  Jinsong Huang,et al.  Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films , 2017 .

[162]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[163]  Yongli Gao,et al.  Light-Induced Degradation of CH3NH3PbI3 Hybrid Perovskite Thin Film , 2017 .

[164]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[165]  Konrad Wojciechowski,et al.  Efficient and Air‐Stable Mixed‐Cation Lead Mixed‐Halide Perovskite Solar Cells with n‐Doped Organic Electron Extraction Layers , 2017, Advanced materials.

[166]  L. Etgar,et al.  High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells , 2017 .

[167]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[168]  Y. Qi,et al.  Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour , 2016, Nature Energy.

[169]  O. Rubel,et al.  Ionization Energy as a Stability Criterion for Halide Perovskites , 2016, 1612.04781.

[170]  Kyungjin Cho,et al.  UV Degradation and Recovery of Perovskite Solar Cells , 2016, Scientific Reports.

[171]  Michael D. McGehee,et al.  Light-Induced Phase Segregation in Halide-Perovskite Absorbers , 2016 .

[172]  C. Du,et al.  2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. , 2016, Nanoscale.

[173]  Xin-dong Wang,et al.  The Additive Coordination Effect on Hybrids Perovskite Crystallization and High‐Performance Solar Cell , 2016, Advanced materials.

[174]  J. Ball,et al.  Defects in perovskite-halides and their effects in solar cells , 2016, Nature Energy.

[175]  Xu Zhou,et al.  Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications , 2016, Light: Science & Applications.

[176]  C. Brabec,et al.  Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors , 2016 .

[177]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[178]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[179]  M. Weller,et al.  Phase behaviour and composition in the formamidinium–methylammonium hybrid lead iodide perovskite solid solution , 2016 .

[180]  H. Snaith,et al.  Light-induced annihilation of Frenkel defects in organo-lead halide perovskites , 2016 .

[181]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[182]  S. Zakeeruddin,et al.  Enhancing Efficiency of Perovskite Solar Cells via N‐doped Graphene: Crystal Modification and Surface Passivation , 2016, Advanced materials.

[183]  Xiaofan Deng,et al.  Electric field induced reversible and irreversible photoluminescence responses in methylammonium lead iodide perovskite , 2016 .

[184]  Wai Kin Chan,et al.  Encapsulation of Perovskite Solar Cells for High Humidity Conditions. , 2016, ChemSusChem.

[185]  N. Park,et al.  Material and Device Stability in Perovskite Solar Cells. , 2016, ChemSusChem.

[186]  El Tayeb Bentria,et al.  Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites. , 2016, ChemSusChem.

[187]  Wei Chen,et al.  Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering , 2016, Nature Energy.

[188]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[189]  G. Cao,et al.  Controlled growth of textured perovskite films towards high performance solar cells , 2016 .

[190]  F. Toma,et al.  Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells , 2016, Nature Communications.

[191]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[192]  Donghwan Kim,et al.  Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[193]  Philip Schulz,et al.  Defect Tolerance in Methylammonium Lead Triiodide Perovskite , 2016 .

[194]  L. T. Angenent,et al.  Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression , 2016 .

[195]  M. Green,et al.  Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells , 2016 .

[196]  D. Mitzi,et al.  Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells , 2016, Advanced materials.

[197]  David T. Limmer,et al.  Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. , 2016, Nano letters.

[198]  P. Kamat,et al.  Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation , 2016 .

[199]  J. Nelson,et al.  Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis , 2016, Nature Communications.

[200]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[201]  Claudine Katan,et al.  Light-activated photocurrent degradation and self-healing in perovskite solar cells , 2016, Nature Communications.

[202]  M. Nazeeruddin,et al.  High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials , 2016 .

[203]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[204]  T. Ding,et al.  Optical characterizations of the surface states in hybrid lead-halide perovskites. , 2016, Physical chemistry chemical physics : PCCP.

[205]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[206]  Y. Qi,et al.  Dopant interdiffusion effects in n-i-p structured spiro-OMeTAD hole transport layer of organometal halide perovskite solar cells , 2016 .

[207]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[208]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[209]  O. Prezhdo,et al.  Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation. , 2016, Journal of the American Chemical Society.

[210]  Aron Walsh,et al.  Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy , 2016, The journal of physical chemistry letters.

[211]  Gang Li,et al.  Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties , 2016, Advanced materials.

[212]  Nakita K. Noel,et al.  Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[213]  Yoshiharu Sato,et al.  Overcoming Short-Circuit in Lead-Free CH3NH3SnI3 Perovskite Solar Cells via Kinetically Controlled Gas-Solid Reaction Film Fabrication Process. , 2016, The journal of physical chemistry letters.

[214]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[215]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[216]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[217]  Tae‐Woo Lee,et al.  Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers , 2016 .

[218]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[219]  Meng Zhang,et al.  NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells , 2015 .

[220]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[221]  Yi-Bing Cheng,et al.  Encapsulation for improving the lifetime of flexible perovskite solar cells , 2015 .

[222]  Nitin P. Padture,et al.  Additive-Modulated Evolution of HC(NH2)2PbI3 Black Polymorph for Mesoscopic Perovskite Solar Cells , 2015 .

[223]  Peng Gao,et al.  Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells , 2015 .

[224]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[225]  Konrad Wojciechowski,et al.  Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films , 2015 .

[226]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[227]  M. Nazeeruddin,et al.  Charge Transfer Dynamics from Organometal Halide Perovskite to Polymeric Hole Transport Materials in Hybrid Solar Cells. , 2015, The journal of physical chemistry letters.

[228]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[229]  Yaohua Mai,et al.  Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. , 2015, Journal of the American Chemical Society.

[230]  Shlomo Magdassi,et al.  Self‐Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells , 2015 .

[231]  Y. Qi,et al.  Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions , 2015 .

[232]  Wei Lin Leong,et al.  Formamidinium tin-based perovskite with low Eg for photovoltaic applications , 2015 .

[233]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[234]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[235]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[236]  Yang Yang,et al.  The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells , 2015, Nature Communications.

[237]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[238]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[239]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[240]  Vytautas Getautis,et al.  Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. , 2015, ACS applied materials & interfaces.

[241]  Y. Qi,et al.  Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering , 2015, Scientific Reports.

[242]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[243]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[244]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[245]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[246]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[247]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[248]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[249]  Matthew R. Leyden,et al.  Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells , 2015 .

[250]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[251]  D. Bradley,et al.  High‐Efficiency Organic Photovoltaic Cells Based on the Solution‐Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS , 2015 .

[252]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[253]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[254]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[255]  Christopher J. Tassone,et al.  Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells , 2014 .

[256]  Ni Zhao,et al.  The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite , 2014 .

[257]  A. Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites , 2014, Angewandte Chemie.

[258]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[259]  Sabre Kais,et al.  Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 , 2014, Nature Communications.

[260]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[261]  Zhenan Bao,et al.  Selective metal deposition at graphene line defects by atomic layer deposition , 2014, Nature Communications.

[262]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[263]  K. Durose,et al.  Improved electrical mobility in highly epitaxial La:BaSnO3 films on SmScO3(110) substrates , 2014 .

[264]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[265]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[266]  Leeor Kronik,et al.  Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations. , 2014, The journal of physical chemistry letters.

[267]  V. Dutta,et al.  Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4:Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells , 2014 .

[268]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[269]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[270]  K. Leo,et al.  Hole-transport material variation in fully vacuum deposited perovskite solar cells , 2014 .

[271]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[272]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[273]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[274]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[275]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[276]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[277]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[278]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[279]  Ling Wu,et al.  Microwave hydrothermal synthesis of MSnO3 (M2+ = Ca2+, Sr2+, Ba2+): effect of M2+ on crystal structure and photocatalytic properties , 2014, Journal of Materials Science.

[280]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[281]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[282]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[283]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[284]  S. Kurtz,et al.  Development of an IEC test for crystalline silicon modules to qualify their resistance to system voltage stress , 2013 .

[285]  T. Dittrich,et al.  Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers , 2013 .

[286]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[287]  Z. Bao,et al.  Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. , 2013, Journal of the American Chemical Society.

[288]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[289]  G. Boschloo,et al.  Initial light soaking treatment enables hole transport material to outperform spiro-OMeTAD in solid-state dye-sensitized solar cells. , 2013, Journal of the American Chemical Society.

[290]  D. Scanlon Defect engineering of BaSnO 3 for high-performance transparent conducting oxide applications , 2013 .

[291]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[292]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[293]  T. Grande,et al.  Strain-controlled oxygen vacancy formation and ordering in CaMnO3 , 2013, 1303.4749.

[294]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[295]  Isaac Kauvar,et al.  The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells , 2012 .

[296]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[297]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[298]  A. Jen,et al.  Evaluation of structure–property relationships of solution-processible fullerene acceptors and their n-channel field-effect transistor performance , 2012 .

[299]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[300]  Hyung J. Kim,et al.  High Mobility in a Stable Transparent Perovskite Oxide , 2012, 1204.6702.

[301]  Z. Bao,et al.  2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. , 2012, Journal of the American Chemical Society.

[302]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[303]  N. Armstrong,et al.  Oxide contacts in organic photovoltaics: characterization and control of near-surface composition in indium-tin oxide (ITO) electrodes. , 2009, Accounts of chemical research.

[304]  A. Cuevas,et al.  Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide , 2009 .

[305]  Keith R. McIntosh,et al.  Recombination at textured silicon surfaces passivated with silicon dioxide , 2009 .

[306]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[307]  D. Trots,et al.  High-temperature structural evolution of caesium and rubidium triiodoplumbates , 2008 .

[308]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[309]  Taro Hitosugi,et al.  A transparent metal: Nb-doped anatase TiO2 , 2005 .

[310]  C. Reed,et al.  Discrete fulleride anions and fullerenium cations. , 2000, Chemical reviews.

[311]  Thomas Lauinger,et al.  Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation , 1996 .

[312]  D. Lang,et al.  Complex nature of gold-related deep levels in silicon , 1980 .

[313]  Nevill Mott,et al.  The Theory of the Photolysis of Silver Bromide and the Photographic Latent Image , 1938 .

[314]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[315]  J. Bouclé,et al.  Stability assessments on luminescent down-shifting molecules for UV-protection of perovskite solar cells , 2018 .

[316]  Yani Chen,et al.  2D Ruddlesden–Popper Perovskites for Optoelectronics , 2018, Advanced materials.

[317]  Matthew R. Leyden,et al.  Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‐Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability , 2018 .

[318]  Felix Lang,et al.  Influence of Radiation on the Properties and the Stability of Hybrid Perovskites , 2018, Advanced materials.

[319]  S. H. Park,et al.  Controlled crystal facet of MAPbI3 perovskite for highly efficient and stable solar cell via nucleation modulation. , 2018, Nanoscale.

[320]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[321]  Michael Grätzel,et al.  Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells , 2018, Nature Energy.

[322]  Liduo Wang,et al.  Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High‐Performance Perovskite Solar Cells , 2017 .