Functional foveae in an electrosensory system

Several species of Mormyrid weakly electric fish have a mobile chin protuberance that serves as a mobile antenna during prey detection, tracking behaviors, and foraging for food. It has been proposed that it constitutes a fovea of the electrosensory system. The distribution of the three types of receptor organs involved in active imaging of the local surroundings, prey detection, and passive electroreception, and their central projection to the electrosensory lobe (ELL), have been studied in Gnathonemus petersii. Density distributions were compared for different body regions. Primary afferent projections were labeled with biocytin or biotinylated dextrans. This showed that there is considerable central “over‐representation” of the mandibular and nasal regions of the sensory surface involved in electrolocation, at the expense of the other body regions investigated. This over‐representation is not a mere effect of the very high density of receptor organs in these areas, but is found to be due to central magnification. This magnification differs between the subclasses of electroreceptors, suggesting a functional segregation in the brain. We conclude that the chin protuberance and the nasal region are the regions of greatest sensitivity for the resistive, capacitive, and low‐frequency characteristics of the environment, and are probably most important in prey detection, whereas other regions of the skin with a lesser resolution and sensitivity to phase distortion of the EOD, in particular the trunk, are probably designed for imaging larger, inanimate features of the environment. Our data support the hypothesis that the chin appendage and nasal region are functionally distinct electrosensory foveae. J. Comp. Neurol. 511:342–359, 2008. © 2008 Wiley‐Liss, Inc.

[1]  Peter Moller,et al.  Electric Organ Discharge Displays during Social Encounter in the Weakly Electric Fish Brienomyrus niger L. (Mormyridae) , 2010 .

[2]  Roland Pusch,et al.  Electric imaging through active electrolocation: implication for the analysis of complex scenes , 2008, Biological Cybernetics.

[3]  Gerhard von der Emde,et al.  Active sensing in a mormyrid fish: electric images and peripheral modifications of the signal carrier give evidence of dual foveation , 2008, Journal of Experimental Biology.

[4]  André Longtin,et al.  Spatial Acuity and Prey Detection in Weakly Electric Fish , 2007, PLoS Comput. Biol..

[5]  J. P. Coimbra,et al.  Topographic analysis of the ganglion cell layer in the retina of the four-eyed fish Anableps anableps , 2006, Visual Neuroscience.

[6]  R. Budelli,et al.  Peripheral electrosensory imaging by weakly electric fish , 2006, Journal of Comparative Physiology A.

[7]  G. von der Emde,et al.  Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish , 2006, Journal of Comparative Physiology A.

[8]  Adriana Migliaro,et al.  Theoretical Analysis of Pre-Receptor Image Conditioning in Weakly Electric Fish , 2005, PLoS Comput. Biol..

[9]  Angel A. Caputi,et al.  Contributions of electric fish to the understanding sensory processing by reafferent systems , 2004, Journal of Physiology-Paris.

[10]  K. Catania,et al.  Tactile Foveation in the Star-Nosed Mole , 2003, Brain, Behavior and Evolution.

[11]  J. Tsukahara,et al.  The ‘goatee’ of goatfish: innervation of taste buds in the barbels and their representation in the brain , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  G. Emde,et al.  Imaging of Objects through active electrolocation in Gnathonemus petersii , 2002, Journal of Physiology-Paris.

[13]  Angel A Caputi,et al.  Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic , 2002, Journal of Physiology-Paris.

[14]  Ivan F. Gonzalez,et al.  The physical nature of life , 2002, Journal of Physiology-Paris.

[15]  Peter Moller,et al.  Multimodal sensory integration in weakly electric fish: a behavioral account , 2002, Journal of Physiology-Paris.

[16]  Peter Moller,et al.  Multisensory Contributions to the Shelter-Seeking Behavior of a Mormyrid Fish, Gnathonemus petersii Günther (Mormyridae, Teleostei): The Role of Vision, and the Passive and Active Electrosenses , 2002, Brain, Behavior and Evolution.

[17]  J. A. Alves-Gomes,et al.  The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective , 2001 .

[18]  Giorgio Vallortigara,et al.  How birds use their eyes Opposite left-right specialization for the lateral and frontal visual hemifield in the domestic chick , 2001, Current Biology.

[19]  A. Caputi,et al.  Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types. , 2000, The Journal of experimental biology.

[20]  A. Caputi,et al.  The electric image in weakly electric fish: perception of objects of complex impedance. , 2000, The Journal of experimental biology.

[21]  M. A. MacIver,et al.  Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. , 1999, The Journal of experimental biology.

[22]  Meek,et al.  Structural organization of the mormyrid electrosensory lateral line lobe , 1999, The Journal of experimental biology.

[23]  G. von der Emde,et al.  Active electrolocation of objects in weakly electric fish , 1999 .

[24]  A. Caputi,et al.  Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo , 1998, The Journal of comparative neurology.

[25]  C. Bell,et al.  The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. , 1998, The Journal of experimental biology.

[26]  G. Emde,et al.  Finding food: senses involved in foraging for insect larvae in the electric fish gnathonemus petersii , 1998, The Journal of experimental biology.

[27]  M. A. Friedman,et al.  Neural Substrates for Species Recognition in the Time-Coding Electrosensory Pathway of Mormyrid Electric Fish , 1998, The Journal of Neuroscience.

[28]  J. Kaas,et al.  Somatosensory fovea in the star‐nosed mole: Behavioral use of the star in relation to innervation patterns and cortical representation , 1997, The Journal of comparative neurology.

[29]  G. von der Emde,et al.  Waveform tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii , 1997, Journal of Comparative Physiology A.

[30]  C. Hopkins,et al.  A quantitative analysis of passive electrolocation behavior in electric fish. , 1997, Brain, Behavior and Evolution.

[31]  C. Hopkins,et al.  Short-range orientation in electric fish: an experimental study of passive electrolocation. , 1996, The Journal of experimental biology.

[32]  A. Cowey,et al.  The overrepresentation of the fovea and adjacent retina in the striate cortex and dorsal lateral geniculate nucleus of the macaque monkey , 1996, Neuroscience.

[33]  J. Caprio,et al.  Somatotopic organization of the facial lobe of the sea catfish Arius felis studied by transganglionic transport of horseradish peroxidase , 1996, The Journal of comparative neurology.

[34]  Marianne Vater,et al.  The cochlea of Tadarida brasiliensis: specialized functional organization in a generalized bat , 1995, Hearing Research.

[35]  Angel A. Caputi,et al.  The electric image in weakly electric fish: I. A data-based model of waveform generation inGymnotus carapo , 1995, Journal of Computational Neuroscience.

[36]  K. Catania,et al.  Structure and innervation of the sensory organs on the snout of the star‐nosed mole , 1995, The Journal of comparative neurology.

[37]  J. Kaas,et al.  Organization of the somatosensory cortex of the star‐nosed mole , 1995, The Journal of comparative neurology.

[38]  G. von der Emde,et al.  Capacitance discrimination in electrolocating, weakly electric pulse fish , 1993, Naturwissenschaften.

[39]  A. Cowey,et al.  Preferential representation of the fovea in the primary visual cortex , 1993, Nature.

[40]  Gerhard von der Emde,et al.  Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii , 1992, Journal of Comparative Physiology A.

[41]  G. von der Emde,et al.  Extreme phase sensitivity of afferents which innervate mormyromast electroreceptors , 1992, Naturwissenschaften.

[42]  Gerhard von der Emde,et al.  Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii , 1990, Journal of Comparative Physiology A.

[43]  C. Bell,et al.  Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology , 1989, The Journal of comparative neurology.

[44]  C. Metz,et al.  Selective suppression of endogenous peroxidase activity: application for enhancing appearance of HRP-labeled neurons in vitro , 1989, Journal of Neuroscience Methods.

[45]  J. Caprio,et al.  Topographical organization of taste and tactile neurons in the facial lobe of the sea catfish, Plotosus lineatus , 1988, Brain Research.

[46]  Peter Moller,et al.  Locomotor and electric displays associated with electrolocation during exploratory behavior in mormyrid fish , 1984, Behavioural Brain Research.

[47]  T. H. Bullock,et al.  The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality , 1983, Brain Research Reviews.

[48]  C. Carr,et al.  Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish , 1982, The Journal of comparative neurology.

[49]  A H Bass,et al.  Temporal coding of species recognition signals in an electric fish. , 1981, Science.

[50]  T. Szabo,et al.  On the course and origin of cranial nerves in the teleost fish Gnathonemus determined by ortho- and retrograde horseradish peroxidase axonal transport , 1979, Neuroscience Letters.

[51]  C. Bell,et al.  Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area , 1978, The Journal of comparative neurology.

[52]  D. Davies Neural and endocrine aspects of behaviour in birds Wright Peter , 1977, Neuroscience.

[53]  P. S. Enger,et al.  Fast conducting electrosensory pathway in the mormyrid fish, Gnathonemus petersii , 1976, Neuroscience Letters.

[54]  M. V. Bennett,et al.  Special cutaneous receptor organs of fish. VII. Ampullary organs of mormyrids , 1974, Journal of morphology.

[55]  H. Karten,et al.  The central connections of the anterior lateral line nerve of Gnathonemus petersii , 1973, The Journal of comparative neurology.

[56]  H. Karten,et al.  The central connections of the posterior lateral line nerve of Gnathonemus petersii , 1973, The Journal of comparative neurology.

[57]  R. Peters,et al.  Electric phenomena in the habitat of the catfishIctalurus nebulosus LeS , 1972, Journal of comparative physiology.

[58]  J. Denizot Etude histochimique des mucopolysaccharides du mormyromaste (type II de Cordier) chezGnathonemus petersii, Mormyridés , 1971, Histochemie.

[59]  Peter Moller,et al.  ‘Communication’ in weakly electric fish, Gnathonemus niger (Mormyridae) I. Variation of electric organ discharge (EOD) frequency elicited by controlled electric stimuli , 1970 .

[60]  J. Denizot Etude histochimique comparée des mucopolysaccharides des organes récepteurs de type ampullaire de certains poissons électriques à faible décharge: Gnathonemus petersii (Mormyridés), Gymnotus carapo (Gymnotidés) et Gymnarchus niloticus (Gymnarchidés) , 1970, Histochemie.

[61]  T Szabo,et al.  Ultrastructure of an electroreceptor (mormyromast) in a mormyrid fish, Gnathonemus petersii. II. , 1970, Journal of ultrastructure research.

[62]  Wilhelm Harder,et al.  Die Beziehungen zwischen Elektrorezeptoren, Elektrischem Organ, Seitenlinienorganen und Nervensystem bei den Mormyridae (Teleostei, Pisces) , 1968, Zeitschrift für vergleichende Physiologie.

[63]  T. Szabo,et al.  Ultrastructure of an electroreceptor (Knollenorgan) in the Mormyrid fish Gnathonemus petersii. I. , 1968, Journal of ultrastructure research.

[64]  T. Szabo,et al.  [Ultrastructure of sensory cells and accessory cells of the "Knollenorgan" of a Mormyrid, Gnathonemus petersi]. , 1967, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles.

[65]  K. Wolf Physiological Salines for Fresh-Water Teleosts , 1963 .

[66]  H. W. Lissmann On the Function and Evolution of Electric Organs in Fish , 1958 .

[67]  P Bard,et al.  CORTICAL REPRESENTATION OF TACTILE SENSIBILITY AS INDICATED BY CORTICAL POTENTIALS. , 1937, Science.

[68]  H. B. V. D. Sprenkel,et al.  The central relations of the cranial nerves in silurus glanis and mormyrus caschive , 1915 .

[69]  G. von der Emde,et al.  Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish. , 2006, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology.

[70]  David Bodznick,et al.  The Physiology of Low-Frequency Electrosensory Systems , 2005 .

[71]  Lon A. Wilkens,et al.  Behavior of Animals with Passive, Low-Frequency Electrosensory Systems , 2005 .

[72]  Carl D. Hopkins,et al.  Passive Electrolocation and the Sensory Guidance of Oriented Behavior , 2005 .

[73]  C. Bell,et al.  Central connections of the posterior lateral line lobe in mormyrid fish , 2004, Experimental Brain Research.

[74]  Y. Galifret,et al.  Les diverses aires fonctionnelles de la rétine du Pigeon , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[75]  P. Moller Electric fishes : history and behavior , 1995 .

[76]  P. Moller,et al.  Electric signals and schooling behavior in a weakly electric fish, Marcusenius cyprinoides L. (Mormyriformes). , 1976, Science.

[77]  Ad. J. Kalmijn,et al.  The Detection of Electric Fields from Inanimate and Animate Sources Other Than Electric Organs , 1974 .

[78]  T. Szabo Anatomy of the Specialized Lateral Line Organs of Electroreception , 1974 .

[79]  J. Denizot [Histochemical study of mucopolysaccharides of mormyromast (type II of Cordier) in mormyrides, Gnathonemus petersii]. , 1971, Histochemie. Histochemistry. Histochimie.

[80]  J. Denizot [Comparative histochemical study of mucopolysaccharides in the ampullary sense organs of weakly electric fish: Gnathonemus petersii (Mormyridae), Gymnotus carapo (Gymnotidae) and Gymnarchus niloticus (Gymnarchidae)]. , 1970, Histochemie. Histochemistry. Histochimie.

[81]  M. V. Bennett,et al.  Electroreceptors in mormyrids. , 1965, Cold Spring Harbor symposia on quantitative biology.

[82]  C. Woolsey,et al.  OBSERVATIONS ON CORTICAL SOMATIC SENSORY MECHANISMS OF CAT AND MONKEY , 1941 .