Dual divergence estimators and tests: Robustness results

The class of dual @f-divergence estimators (introduced in Broniatowski and Keziou (2009) [5]) is explored with respect to robustness through the influence function approach. For scale and location models, this class is investigated in terms of robustness and asymptotic relative efficiency. Some hypothesis tests based on dual divergence criteria are proposed and their robustness properties are studied. The empirical performances of these estimators and tests are illustrated by Monte Carlo simulation for both non-contaminated and contaminated data.

[1]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[2]  Aida Toma,et al.  Optimal robust M-estimators using divergences , 2009 .

[3]  E. Ronchetti,et al.  Robust Tests of Predictive Accuracy , 2002 .

[4]  I. Vajda,et al.  Asymptotic divergence of estimates of discrete distributions , 1995 .

[5]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[6]  D. G. Simpson,et al.  Minimum Hellinger Distance Estimation for the Analysis of Count Data , 1987 .

[7]  Aida Toma,et al.  Robust tests based on dual divergence estimators and saddlepoint approximations , 2010, J. Multivar. Anal..

[8]  M. C. Jones,et al.  Robust and efficient estimation by minimising a density power divergence , 1998 .

[9]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.

[10]  Michel Broniatowski,et al.  Parametric estimation and tests through divergences and the duality technique , 2008, J. Multivar. Anal..

[11]  B. Lindsay Efficiency versus robustness : the case for minimum Hellinger distance and related methods , 1994 .

[12]  Frank R. Hampel,et al.  On the Philosophical Foundations of Statistics: Bridges to Huber’s work, and recent results , 1996 .

[13]  A. Toma Minimum Hellinger distance estimators for multivariate distributions from the Johnson system , 2008 .

[14]  E. Ronchetti,et al.  Robust Bounded-Influence Tests in General Parametric Models , 1994 .

[15]  P. J. Huber,et al.  Robust statistics, data analysis, and computer intensive methods : in honor of Peter Huber's 60th birthday , 1996 .

[16]  M. Broniatowski,et al.  Minimization of divergences on sets of signed measures , 2010, 1003.5457.

[17]  R. Tamura,et al.  Minimum Hellinger Distance Estimation for Multivariate Location and Covariance , 1986 .

[18]  B. Lindsay,et al.  Minimum disparity estimation for continuous models: Efficiency, distributions and robustness , 1994 .

[19]  Elvezio Ronchetti,et al.  A smoothing principle for the Huber and other location M-estimators , 2011, Comput. Stat. Data Anal..

[20]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[21]  Michel Broniatowski,et al.  An estimation method for the Neyman chi-square divergence with application to test of hypotheses , 2006 .

[22]  Igor Vajda,et al.  On Divergences and Informations in Statistics and Information Theory , 2006, IEEE Transactions on Information Theory.

[23]  Igor Vajda,et al.  Several applications of divergence criteria in continuous families , 2009, Kybernetika.

[24]  R. Beran Minimum Hellinger distance estimates for parametric models , 1977 .

[25]  D. G. Simpson,et al.  Hellinger Deviance Tests: Efficiency, Breakdown Points, and Examples , 1989 .

[26]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[27]  Y. Shao,et al.  On robustness and efficiency of minimum divergence estimators , 2001 .