Strict Fuzzy Orderings with a Given Context of Similarity

This paper introduces strict fuzzy orderings in the framework of similarity-based fuzzy orderings, i.e. where a context of similarity/indistinguishability is given by means of a fuzzy equivalence relation. We consider how to construct strict fuzzy orderings from partial fuzzy orderings and vice versa. The appropriateness of the concepts introduced in this paper is underlined by theoretical results and examples. We observe that the strongest results are achieved if the underlying triangular norm induces an involutive residual negation.

[1]  J. Fodor Strict preference relations based on weak t-norms , 1991 .

[2]  Mustafa Demirci,et al.  On Many-Valued Partitions and Many-Valued Equivalence Relations , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[3]  Mustafa Demirci,et al.  An introduction to vague complemented ordered sets , 2007, Inf. Sci..

[4]  Bernard De Baets,et al.  A plea for the use of Lukasiewicz triplets in the definition of fuzzy preference structures. (I). General argumentation , 1998, Fuzzy Sets Syst..

[5]  S. Ovchinnikov STRUCTURE OF FUZZY BINARY RELATIONS , 1981 .

[6]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[7]  F. Klawonn Fuzzy sets and vague environments , 1994 .

[8]  Bernard De Baets,et al.  A compendium of fuzzy weak orders: Representations and constructions , 2007, Fuzzy Sets Syst..

[9]  Ulrich Höhle,et al.  Partial ordering in L-underdeterminate sets , 1985, Inf. Sci..

[10]  Mustafa Demirci,et al.  A theory of vague lattices based on many-valued equivalence relations - I: general representation results , 2005, Fuzzy Sets Syst..

[11]  Bernard De Baets,et al.  Additive decomposition of fuzzy pre-orders , 2007, Fuzzy Sets Syst..

[12]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[13]  S. Ovchinnikov An Introduction to Fuzzy Relations , 2000 .

[14]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[15]  M. Roubens Some properties of choice functions based on valued binary relations , 1989 .

[16]  Bernard De Baets,et al.  Maxitive Fuzzy Preference Structures , 2000 .

[17]  Martine De Cock,et al.  Openings and closures of fuzzy preorderings: theoretical basics and applications to fuzzy rule-based systems , 2003, Int. J. Gen. Syst..

[18]  S. Ovchinnikov,et al.  On strict preference relations , 1991 .

[19]  J. Recasens,et al.  Fuzzy Equivalence Relations: Advanced Material , 2000 .

[20]  Bernard De Baets,et al.  On the structure of left-continuous t-norms that have a continuous contour line , 2007, Fuzzy Sets Syst..

[21]  S. Ovchinnikov Similarity relations, fuzzy partitions, and fuzzy orderings , 1991 .

[22]  Bernard De Baets,et al.  A plea for the use of Lukasiewicz triplets in the definition of fuzzy preference structures. (II). The identity case , 1998, Fuzzy Sets Syst..

[23]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[24]  L. Valverde,et al.  An Inquiry into Indistinguishability Operators , 1984 .

[25]  Frank Klawonn,et al.  A formal study of linearity axioms for fuzzy orderings , 2004, Fuzzy Sets Syst..

[26]  Ulrich Bodenhofer,et al.  A Similarity-Based Generalization of Fuzzy Orderings Preserving the Classical Axioms , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..