Black Hole Entropy in Scalar-Tensor and ƒ(R) Gravity: An Overview

A short overview of black hole entropy in alternative gravitational theories is presented. Motivated by the recent attempts to explain the cosmic acceleration without dark energy, we focus on metric and Palatini ƒ(R) gravity and on scalar-tensor theories.

[1]  O. Zaslavskii Thermodynamics of black holes with an infinite effective area of a horizon , 2002, gr-qc/0206018.

[2]  H. M. Sadjadi Generalized second law in modified theory of gravity , 2007, 0709.2435.

[3]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[4]  A. Riess,et al.  Is there an Indication of Evolution of Type Ia Supernovae from their Rise Times? , 1999, astro-ph/9907038.

[5]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[6]  V. Faraoni f(R) gravity: successes and challenges , 2008, 0810.2602.

[7]  E. Elizalde,et al.  Black hole entropy in modified-gravity models , 2007, 0708.0432.

[8]  Gravity and the Thermodynamics of Horizons , 2003, gr-qc/0311036.

[9]  D. Vollick Noether charge and black hole entropy in modified theories of gravity , 2007, 0710.1859.

[10]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[11]  K. Nordtvedt Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences , 1970 .

[12]  Cold scalar-tensor black holes: causal structure, geodesics, stability. , 1998, gr-qc/9804064.

[13]  P. Teyssandier,et al.  The Cauchy problem for the R+R2 theories of gravity without torsion , 1983 .

[14]  Shapiro,et al.  Collapse to black holes in Brans-Dicke theory. II. Comparison with general relativity. , 1995, Physical review. D, Particles and fields.

[15]  B. Chauvineau Stationarity and large ω Brans–Dicke solutions versus general relativity , 2007 .

[16]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[17]  K. Bronnikov,et al.  Structure and stability of cold scalar-tensor black holes , 1998, gr-qc/9801050.

[18]  Thermodynamics of apparent horizon in brane world scenario , 2006, hep-th/0612144.

[19]  A. Degasperis,et al.  Newton-Equivalent Hamiltonians for the Harmonic Oscillator , 2001 .

[20]  Yong-Wan Kim,et al.  Thermodynamics of Hořava–Lifshitz black holes , 2009, 0905.0179.

[21]  D. Kalligas,et al.  Gravitational collapse of collisionless matter in scalar-tensor theories: Scalar waves and black hole formation , 1998 .

[22]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[23]  Curvature Quintessence , 2002, gr-qc/0201033.

[24]  N. Chernikov,et al.  Quantum theory of scalar field in de Sitter space-time , 1968 .

[25]  S. Nojiri,et al.  Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration , 2003, hep-th/0307288.

[26]  H. Maeda Dynamical black holes with symmetry in Einstein‐Gauss‐Bonnet gravity , 2009 .

[27]  On black hole entropy. , 1993, Physical review. D, Particles and fields.

[28]  Electrically Charged Cold Black Holes in Scalar-Tensor Theories , 1999, gr-qc/9903028.

[29]  V. Faraoni The ω-->∞ limit of Brans-Dicke theory , 1998 .

[30]  J. Barrow The premature recollapse problem in closed inflationary universes , 1988 .

[31]  S. Sonego,et al.  Coupling to the curvature for a scalar field from the equivalence principle , 1993 .

[32]  R. Wagoner Scalar-Tensor Theory and Gravitational Waves , 1970 .

[33]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[34]  Myers,et al.  Black-hole thermodynamics in Lovelock gravity. , 1988, Physical review. D, Particles and fields.

[35]  K. Krori,et al.  Kerr‐like metric in Brans–Dicke theory , 1982 .

[36]  Quintessence without scalar fields , 2003, astro-ph/0303041.

[37]  F. Hehl,et al.  General Relativity with Spin and Torsion: Foundations and Prospects , 1976 .

[38]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[39]  J. Kerimo Dynamical black holes in scalar-tensor theories , 2000 .

[40]  Iyer,et al.  Comparison of the Noether charge and Euclidean methods for computing the entropy of stationary black holes. , 1995, Physical review. D, Particles and fields.

[41]  A. Degasperis,et al.  On the quantization of Newton-equivalent Hamiltonians , 2004 .

[42]  J. Scanio,et al.  Canonical transformation to the free particle , 1977 .

[43]  Illusions of general relativity in Brans-Dicke gravity , 1999, gr-qc/9902083.

[44]  Anzhong Wang,et al.  Friedmann equations and thermodynamics of apparent horizons. , 2007, Physical review letters.

[45]  Cold Black Holes and Conformal Continuations , 2006, gr-qc/0609084.

[46]  Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory , 1998, gr-qc/9803086.

[47]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[48]  E. Linder Resource Letter DEAU-1: Dark energy and the accelerating universe , 2007, 0705.4102.

[49]  S. Liberati,et al.  The metric-affine formalism of f(R) gravity , 2006, gr-qc/0611040.

[50]  C. Romero,et al.  Brans-dicke cosmology and the cosmological constant: The spectrum of vacuum solutions , 1992 .

[51]  Matter instability in modified gravity , 2006, astro-ph/0610734.

[52]  T. Padmanabhan,et al.  Einstein's equations as a thermodynamic identity: The Cases of stationary axisymmetric horizons and evolving spherically symmetric horizons , 2006, gr-qc/0701002.

[53]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[54]  D. Raine General relativity , 1980, Nature.

[55]  T. Sotiriou Modified Actions for Gravity: Theory and Phenomenology , 2007, 0710.4438.

[56]  C. Romero,et al.  The limits of Brans-Dicke spacetimes: a coordinate-free approach , 1993, gr-qc/9304030.

[57]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[58]  T. Jacobson,et al.  Black Hole Thermodynamics and Lorentz Symmetry , 2008, 0804.2720.

[59]  David Wands Extended gravity theories and the Einstein--Hilbert action , 1994 .

[60]  J. Barrow,et al.  Inflation and the Conformal Structure of Higher Order Gravity Theories , 1988 .

[61]  A. Dolgov,et al.  Can modified gravity explain accelerated cosmic expansion , 2003, astro-ph/0307285.

[62]  R. Wald Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .

[63]  R. Wald,et al.  Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.

[64]  T. Matsuda On the Gravitational Collapse in Brans-Dicke Theory of Gravity , 1972 .

[65]  C. Romero,et al.  Does the Brans-Dicke theory of gravity go over to general relativity when ω←∞?☆ , 1993 .

[66]  Mark Trodden,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[67]  J. Bekenstein,et al.  Black holes in the tensor-vector-scalar theory of gravity and their thermodynamics , 2007, 0708.2639.

[68]  N. Mavromatos Theory and Phenomenology , 2008 .

[69]  Valerio Faraoni,et al.  Cosmology in Scalar-Tensor Gravity , 2004 .

[70]  T. Sotiriou 6+1 lessons from f(R) gravity , 2008, 0810.5594.

[71]  Cold Black Holes in the Einstein-Scalar Field System , 2006, gr-qc/0604055.

[72]  R. Brustein,et al.  Wald's entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling , 2007, 0712.3206.

[73]  Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. , 1995, Physical review. D, Particles and fields.

[74]  E. Gunzig,et al.  The Origin of structure in the universe , 1993 .

[75]  1/R gravity and scalar-tensor gravity , 2003, astro-ph/0307338.

[76]  T. Padmanabhan Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes , 2002 .

[77]  S. Capozziello,et al.  Extended theories of gravity and their cosmological and astrophysical applications , 2007, 0706.1146.

[78]  R. Cai A Note on Thermodynamics of Black Holes in Lovelock Gravity , 2003, hep-th/0311240.

[79]  R. Cai,et al.  Corrected entropy-area relation and modified Friedmann equations , 2008, 0807.1232.

[80]  Fourth order gravity: Equations, history, and applications to cosmology , 2006, gr-qc/0602017.

[81]  E. Elizalde,et al.  f ( R ) gravity equation of state , 2008, 0804.3721.

[82]  R. Dicke Mach's Principle and Invariance under Transformation of Units , 1962 .

[83]  P. Bergmann Comments on the scalar-tensor theory , 1968 .

[84]  Stefano Casertano,et al.  The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration , 2001, astro-ph/0104455.

[85]  Jacobson,et al.  Black hole entropy and higher curvature interactions. , 1993, Physical review letters.

[86]  A. G.,et al.  MEASUREMENTS OF AND FROM 42 HIGH-REDSHIFT SUPERNOVAE , 1998 .

[87]  P. Davies,et al.  The thermodynamic theory of black holes , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[88]  N. Banerjee,et al.  Does Brans-Dicke theory always yield general relativity in the infinite ω limit? , 1997 .

[89]  Pseudo)issue of the conformal frame revisited , 2006, gr-qc/0612075.

[90]  T. Padmanabhan,et al.  Thermodynamic route to field equations in Lanczos-Lovelock gravity , 2006, hep-th/0607240.

[91]  D. Vollick 1 / R curvature corrections as the source of the cosmological acceleration , 2003, astro-ph/0306630.

[92]  Jacobson,et al.  Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.

[93]  Theory and Experiment in Gravitational Physics , 1982 .

[94]  S. Hawking Particle creation by black holes , 1975 .

[95]  Brian Whitt Fourth-order gravity as general relativity plus matter , 1984 .

[96]  Black Holes in Higher Curvature Gravity , 1998, gr-qc/9811042.

[97]  S. Capozziello,et al.  A Bird's Eye View of f (R)-Gravity , 2009, 0909.4672.

[98]  M. S. Burns,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[99]  M. M. Sheikh-Jabbari,et al.  Lovelock gravity at the crossroads of Palatini and metric formulations , 2007, 0705.1879.

[100]  B. Bagchi,et al.  Temperature dependent gravitational constant and black hole physics , 1983 .

[101]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[102]  S. Dubovsky,et al.  Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind , 2006, hep-th/0603158.

[103]  S. Liberati,et al.  Nonequilibrium thermodynamics of spacetime: The role of gravitational dissipation , 2009, 0909.4194.

[104]  Mamoru Doi,et al.  New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope , 2003 .

[105]  S. Hawking Black holes in the Brans-Dicke , 1972 .

[106]  The Significance of matter coupling in f(R) gravity , 2006, gr-qc/0611158.

[107]  S. Liberati,et al.  Theory of gravitation theories: a no-progress report , 2007, 0707.2748.

[108]  M. MacCallum,et al.  On limits of spacetimes-a coordinate-free approach , 1993, gr-qc/9302005.

[109]  T. Sotiriou f(R) gravity and scalar–tensor theory , 2006, gr-qc/0604028.

[110]  R. Wald,et al.  The Thermodynamics of Black Holes , 2001, Living reviews in relativity.

[111]  C. Callan,et al.  A new improved energy-momentum tensor , 1970 .

[112]  de Sitter space and the equivalence between f(R) and scalar-tensor gravity , 2007, gr-qc/0703044.

[113]  One-loop f(R) gravity in de Sitter universe , 2005, hep-th/0501096.

[114]  藤井 保憲,et al.  The scalar-tensor theory of gravitation , 2003 .

[115]  Eric V. Linder Dark Energy and the Accelerating Universe , 2007 .

[116]  Iyer,et al.  Some properties of the Noether charge and a proposal for dynamical black hole entropy. , 1994, Physical review. D, Particles and fields.

[117]  Shapiro,et al.  Collapse to black holes in Brans-Dicke theory. I. Horizon boundary conditions for dynamical spacetimes. , 1994, Physical review. D, Particles and fields.

[118]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[119]  C. Lousto,et al.  On Brans-Dicke Black Holes , 1993 .

[120]  Gravitation, thermodynamics and quantum theory , 1999, gr-qc/9901033.

[121]  Nonequilibrium thermodynamics of spacetime. , 2006, Physical review letters.

[122]  Is there an Indication of Evolution of Type 1a Supernovae from their Rise Times , 1999 .

[123]  N. Straumann Problems with Modified Theories of Gravity, as Alternatives to Dark Energy , 2008, 0809.5148.

[124]  Metric-affine f(R) theories of gravity , 2006, gr-qc/0604006.