Enhanced noise resilience of the surface–Gottesman-Kitaev-Preskill code via designed bias

We study the code obtained by concatenating the standard single-mode Gottesman-Kitaev-Preskill (GKP) code with the surface code. We show that the noise tolerance of this surface-GKP code with respect to (Gaussian) displacement errors improves when a single-mode squeezing unitary is applied to each mode assuming that the identification of quadratures with logical Pauli operators is suitably modified. We observe noise-tolerance thresholds of up to $\sigma\approx 0.58$ shift-error standard deviation when the surface code is decoded without using GKP syndrome information. In contrast, prior results by Fukui et al. and Vuillot et al. report a threshold between $\sigma\approx 0.54$ and $\sigma\approx 0.55$ for the standard (toric-, respectively) surface-GKP code. The modified surface-GKP code effectively renders the mode-level physical noise asymmetric, biasing the logical-level noise on the GKP-qubits. The code can thus benefit from the resilience of the surface code against biased noise. We use the approximate maximum likelihood decoding algorithm of Bravyi et al. to obtain our threshold estimates. Throughout, we consider an idealized scenario where measurements are noiseless and GKP states are ideal. Our work demonstrates that Gaussian encodings of individual modes can enhance concatenated codes.

[1]  M. Berry,et al.  Quantization of linear maps on a torus-fresnel diffraction by a periodic grating , 1980 .

[2]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[3]  E. Knill,et al.  Error analysis for encoding a qubit in an oscillator (5 pages) , 2005, quant-ph/0510107.

[4]  J. I. Cirac,et al.  Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states , 2007 .

[5]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[6]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[7]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[8]  A. Bouzouina,et al.  Equipartition of the eigenfunctions of quantized ergodic maps on the torus , 1996 .

[9]  The quantized Baker's transformation , 1989 .

[10]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[11]  Yang Wang,et al.  Quantum error correction with the toric Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[12]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[13]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[14]  L. Fejes Über die dichteste Kugellagerung , 1942 .

[15]  Mazyar Mirrahimi,et al.  Repetition Cat Qubits for Fault-Tolerant Quantum Computation , 2019 .

[16]  Kyungjoo Noh,et al.  Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[17]  J. T. Chalker,et al.  Two-dimensional random-bond Ising model, free fermions, and the network model , 2002 .

[18]  Nicolas J Cerf,et al.  No-go theorem for gaussian quantum error correction. , 2008, Physical review letters.

[19]  Stephen D Bartlett,et al.  Ultrahigh Error Threshold for Surface Codes with Biased Noise. , 2017, Physical review letters.

[20]  A. Holevo,et al.  A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .

[21]  S. J. Devitt,et al.  Asymmetric quantum error correction via code conversion , 2007, 0708.3969.

[22]  Liang Jiang,et al.  Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes , 2018, IEEE Transactions on Information Theory.

[23]  Hector Bombin,et al.  Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007 .

[24]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[25]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[26]  S. Girvin,et al.  Bias-preserving gates with stabilized cat qubits , 2019, Science Advances.

[27]  Christopher T. Chubb,et al.  Tailoring Surface Codes for Highly Biased Noise , 2018, Physical Review X.

[28]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[29]  John Preskill,et al.  Achievable rates for the Gaussian quantum channel , 2001, quant-ph/0105058.

[30]  Liang Jiang,et al.  Encoding an Oscillator into Many Oscillators. , 2019, Physical review letters.

[31]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[32]  J. H. Cole,et al.  Error correction optimisation in the presence of X/Z asymmetry , 2007, 0709.3875.

[33]  Barbara M. Terhal,et al.  Generating grid states from Schrödinger-cat states without postselection , 2017, 1709.08580.

[34]  Atsushi Okamoto,et al.  High-threshold fault-tolerant quantum computation with analog quantum error correction , 2017, 1712.00294.

[35]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[36]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[37]  J. Snowdon,et al.  Concatenated coding in the presence of dephasing , 2000 .