ROBUST DECENTRALIZED PSS DESIGN: ON THE BASE OF EXPERIMENTAL DATA

This paper presents a robust decentralized structure Power System Stabilizer (PSS) design in the frequency domain using M -� structure and a time domain with a Linear Matrix Inequality (LMI) approach. The approach is demonstrated by designing fixed structure PSS for power plant of Slovakia EMO11. K e y w o r d s: power system stabilizers, LMI, robust control

[1]  R. Skelton,et al.  A convexifying algorithm for the design of structured linear controllers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[2]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[3]  Janusz Bialek,et al.  Excitation control system for use with synchronous generators , 1998 .

[4]  Goro Shirai,et al.  Multi-Machine Power Systems Stabilizing Control Using Output Feedback Excitation System , 2003 .

[5]  V. Vesely,et al.  Robust PSS design for a multivariable power system , 2005, 2005 IEEE Russia Power Tech.

[6]  Vojtech Veselý,et al.  Robust Output Feedback Control Synthesis: LMI Approach , 2003 .

[7]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[8]  Oriane M. Neto,et al.  Allocation and design of power system stabilizers for mitigating low-frequency oscillations in the eastern interconnected power system in Japan , 2004 .

[9]  Innocent Kamwa,et al.  An approach to PSS design for transient stability improvement through supplementary damping of the common low-frequency , 1993 .

[10]  Getachew K. Befekadu,et al.  ROBUST DECENTRALIZED STRUCTURE - CONSTRAINED CONTROLLER DESIGN FOR POWER SYSTEMS: AN LMI APPROACH , 2005 .

[11]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[12]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[13]  Om P. Malik,et al.  Verification of an Adaptive Excitation Regulator on a Power System Physical Model , 1996 .

[14]  R. Skelton,et al.  An LMI optimization approach for structured linear controllers , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).