Effect of temperature on the pre-creep mechanical properties of silicon nitride

The elasto-plastic properties and contact damage evolution of a commercial polycrystalline silicon nitride are evaluated as a function of temperature up to 1000 °C, using a recently developed method combining Hertzian indentation and FEM simulation. The results of the study are compared to existing data for other ceramic materials such as alumina and zirconia. Silicon nitride is found to exhibit an excellent combination of elasto-plastic properties in the pre-creep temperature range and good contact damage resistance. These qualities make this material ideal for high temperature applications in general, and in particular to be used in spherical indenters for the evaluation of mechanical properties of other materials at elevated temperature using the procedure applied in this work.

[1]  Brian R. Lawn,et al.  Role of Microstructure in Hertzian Contact Damage in Silicon Nitride: I, Mechanical Characterization , 2005 .

[2]  J. Martínez-Fernández,et al.  Microstructure and room-temperature mechanical properties of Si3N4 with various α/β phase ratios , 1998 .

[3]  Bikramjit Basu,et al.  The innovative impulse excitation technique for high-temperature mechanical spectroscopy , 2000 .

[4]  D. Tabor Hardness of Metals , 1937, Nature.

[5]  Brian R. Lawn,et al.  Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts , 1994 .

[6]  B. Lawn Indentation of Ceramics with Spheres: A Century after Hertz , 1998 .

[7]  R Ruud Metselaar,et al.  The temperature dependence of the Young's modulus of MgSiN2, AlN and Si3N4 , 2001 .

[8]  B. Lawn,et al.  Cracking in Ceramic/metal/polymer Trilayer Systems , 2002 .

[9]  Brian R. Lawn,et al.  Designing damage-resistant brittle-coating structures: II. Trilayers , 2003 .

[10]  B. Lawn,et al.  Effect of microstructural coarsening on Hertzian contact damage in silicon nitride , 1995 .

[11]  Brian R. Lawn,et al.  Indentation stress-strain curves for “quasi-ductile” ceramics , 1996 .

[12]  Brian R. Lawn,et al.  Application of Hertzian Tests to Measure Stress–Strain Characteristics of Ceramics at Elevated Temperatures , 2007 .

[13]  D. Gómez-García,et al.  Creep mechanism of gas-pressure-sintered silicon nitride polycrystals I. Macroscopic and microscopic experimental study , 2004 .

[14]  B. Lawn,et al.  On the theory of Hertzian fracture , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  T. Rouxel,et al.  Temperature dependence of Young's modulus in Si3N4-based ceramics: roles of sintering additives and of SiC-particle content , 2002 .

[16]  B. Lawn,et al.  Contact fracture of brittle bilayer coatings on soft substrates , 2001 .

[17]  O. Biest,et al.  Assessment of the high temperature elastic and damping properties of silicon nitrides and carbides with the impulse excitation technique , 2002 .

[18]  †. J.J.Meléndez-Martínez,et al.  Creep of silicon nitride , 2004 .

[19]  Contact Properties of Yttria Partially Stabilized Zirconia Up To 1000°C , 2007 .

[20]  B. Lawn,et al.  Contact Fatigue in Silicon Nitride , 2004 .

[21]  Brian R. Lawn,et al.  Stress Analysis of Contact Deformation in Quasi‐Plastic Ceramics , 2005 .

[22]  F. Guiberteau Indentation fatigue : a simple cyclic Hertzian test for measuring damage accumulation in polycrystalline ceramics , 1993 .

[23]  †. J.J.Meléndez-Martínez,et al.  Temperature dependence of mechanical properties of alumina up to the onset of creep , 2007 .

[24]  O. Biest,et al.  Fatigue resistant silicon nitride ceramics due to anelastic deformation and energy dissipation , 2000 .

[25]  †. J.J.Meléndez-Martínez,et al.  Creep behaviour of two sintered silicon nitride ceramics , 2002 .

[26]  B. Lawn,et al.  Making Ceramics "Ductile" , 1994, Science.

[27]  D. Gómez-García,et al.  Creep mechanism of gas-pressure-sintered silicon nitride polycrystals II. Deformation mechanism , 2004 .

[28]  I. Tomeno High Temperature Elastic Moduli of Si3N4 Ceramics , 1981 .