Inference on Covariance Operators via Concentration Inequalities: k-sample Tests, Classification, and Clustering via Rademacher Complexities

We propose a novel approach to the analysis of covariance operators making use of concentration inequalities. First, non-asymptotic confidence sets are constructed for such operators. Then, subsequent applications including a k sample test for equality of covariance, a functional data classifier, and an expectation-maximization style clustering algorithm are derived and tested on both simulated and phoneme data.

[1]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[2]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[3]  Zhou Fan Churchill Confidence Regions for Infinite-Dimensional Statistical Parameters , 2015 .

[4]  C. Abraham,et al.  Unsupervised Curve Clustering using B‐Splines , 2003 .

[5]  R. Nickl,et al.  GLOBAL UNIFORM RISK BOUNDS FOR WAVELET DECONVOLUTION ESTIMATORS , 2011, 1103.1489.

[6]  R. Cooke Real and Complex Analysis , 2011 .

[7]  G. Blanchard,et al.  Some nonasymptotic results on resampling in high dimension, I: Confidence regions, II: Multiple tests , 2007, 0712.0775.

[8]  Vladimir Koltchinskii,et al.  Rademacher penalties and structural risk minimization , 2001, IEEE Trans. Inf. Theory.

[9]  Piercesare Secchi,et al.  Distances and inference for covariance operators , 2014 .

[10]  Peter L. Bartlett,et al.  Model Selection and Error Estimation , 2000, Machine Learning.

[11]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[12]  John H. Maddocks,et al.  Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles , 2010 .

[13]  R. Nickl,et al.  CONFIDENCE BANDS IN DENSITY ESTIMATION , 2010, 1002.4801.

[14]  Chung Chang,et al.  Functional data classification: a wavelet approach , 2014, Computational Statistics.

[15]  L. Isserlis ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .

[16]  Gerard Kerkyacharian,et al.  Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds , 2011, 1102.2450.

[17]  Piotr Kokoszka,et al.  Testing the Equality of Covariance Operators in Functional Samples , 2011, 1104.4049.

[18]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[19]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[20]  Gérard Biau,et al.  FUNCTIONAL SUPERVISED CLASSIFICATION WITH WAVELETS , 2008 .

[21]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[22]  Piercesare Secchi,et al.  Distances and inference for covariance functions , 2012 .

[23]  P. Hall,et al.  Achieving near perfect classification for functional data , 2012 .

[24]  Ci-Ren Jiang,et al.  A Functional Approach to Deconvolve Dynamic Neuroimaging Data , 2014, Journal of the American Statistical Association.

[25]  Jie Peng,et al.  Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions , 2008, 0805.0463.

[26]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[27]  V. Koltchinskii Rejoinder: Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0135.

[28]  John Coleman,et al.  The analysis of Acoustic Phonetic Data: exploring differences in the spoken Romance languages , 2015 .

[29]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[30]  Richard H. Glendinning,et al.  Shape classification using smooth principal components , 2003, Pattern Recognit. Lett..

[31]  E. Giné,et al.  Decoupling: From Dependence to Independence , 1998 .

[32]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[33]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[34]  V. Koltchinskii Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.

[35]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[36]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[37]  R. Nickl,et al.  Mathematical Foundations of Infinite-Dimensional Statistical Models , 2015 .