SURREAL ORDERED EXPONENTIAL FIELDS
暂无分享,去创建一个
[1] R. Hodel. An Introduction to Mathematical Logic , 1995 .
[2] Lou van den Dries,et al. Fields of surreal numbers and exponentiation , 2001 .
[3] Jan. 9–Jan,et al. Combinatorial Game Theory , 2022 .
[4] Philip Ehrlich. Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.
[5] Antongiulio Fornasiero,et al. Embedding Henselian fields into power series , 2006 .
[6] A. Berarducci,et al. Transseries as germs of surreal functions , 2017, Transactions of the American Mathematical Society.
[7] Philip Ehrlich. Absolutely saturated models , 1989 .
[8] Philip Ehrlich. Conway names, the simplicity hierarchy and the surreal number tree , 2011, J. Log. Anal..
[9] Philip Ehrlich,et al. An alternative construction of Conway's ordered field No , 1988 .
[10] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[11] Michael Ch. Schmeling,et al. Corps de transseries , 2001 .
[12] Saharon Shelah,et al. Exponentiation in power series fields , 1996 .
[13] S. Kuhlmann,et al. Real closed exponential fields , 2011, 1112.4062.
[14] Lou van den Dries. On the Elementary Theory of Restricted Elementary Functions , 1988, J. Symb. Log..
[15] Philip Ehrlich,et al. The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.
[16] Angus Macintyre,et al. Logarithmic‐Exponential Power Series , 1997 .
[17] H. Gonshor. An Introduction to the Theory of Surreal Numbers , 1986 .
[18] N. L. Alling,et al. Foundations of Analysis Over Surreal Number Fields , 2012 .
[19] A. Macintyre,et al. The Elementary Theory of Restricted Analytic Fields with Exponentiation , 1994 .
[20] John H. Conway. On numbers and games, Second Edition , 2001 .
[21] L. Lipshitz,et al. Ultraproducts and approximation in local rings I , 1979 .
[22] H. Hahn,et al. Über die nichtarchimedischen Größensysteme , 1995 .
[23] P. Alam. ‘L’ , 2021, Composites Engineering: An A–Z Guide.
[24] Antongiulio Fornasiero. Integration on surreal numbers , 2004 .
[25] A. Berarducci,et al. Mini-Workshop: Surreal Numbers, Surreal Analysis, Hahn Fields and Derivations , 2017 .
[26] L. Dries,et al. The surreal numbers as a universal $H$-field , 2015, Journal of the European Mathematical Society.
[27] Salma Kuhlmann,et al. Ordered exponential fields , 1999 .
[28] L. Dries. A generalization of the Tarski-Seidenberg theorem, and some nondefinability results , 1986 .
[29] J. Hoeven,et al. Defining a surreal hyperexponential , 2020 .
[30] Hassan Sfouli. On the Elementary Theory of Restricted Real and Imaginary Parts of Holomorphic Functions , 2012, Notre Dame J. Formal Log..
[31] A. Berarducci,et al. Surreal numbers, derivations and transseries , 2015, 1503.00315.
[32] Hans Hermes,et al. Introduction to mathematical logic , 1973, Universitext.
[33] Marcus Tressl,et al. Comparison of exponential‐logarithmic and logarithmic‐exponential series , 2011, Math. Log. Q..
[34] Philip Ehrlich,et al. Number Systems with Simplicity Hierarchies: a Generalization of Conway's Theory of surreal numbers II , 2018, J. Symb. Log..
[35] August Pfizmaier,et al. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften , 1875 .
[36] R.K. Guy,et al. On numbers and games , 1978, Proceedings of the IEEE.
[37] H. Friedman,et al. Integration on the Surreals: a Conjecture of Conway, Kruskal and Norton , 2015, 1505.02478.
[38] B. H. Neumann,et al. On ordered division rings , 1949 .
[39] κ-bounded Exponential-Logarithmic Power Series Fields ∗ , 2004 .
[40] Jan Denef,et al. P-adic and real subanalytic sets , 1988 .
[41] Jean-Pierre Ressayre,et al. Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..