SURREAL ORDERED EXPONENTIAL FIELDS

Abstract In 2001, the algebraico-tree-theoretic simplicity hierarchical structure of J. H. Conway’s ordered field ${\mathbf {No}}$ of surreal numbers was brought to the fore by the first author and employed to provide necessary and sufficient conditions for an ordered field (ordered $K$ -vector space) to be isomorphic to an initial subfield ( $K$ -subspace) of ${\mathbf {No}}$ , i.e. a subfield ( $K$ -subspace) of ${\mathbf {No}}$ that is an initial subtree of ${\mathbf {No}}$ . In this sequel, analogous results are established for ordered exponential fields, making use of a slight generalization of Schmeling’s conception of a transseries field. It is further shown that a wide range of ordered exponential fields are isomorphic to initial exponential subfields of $({\mathbf {No}}, \exp )$ . These include all models of $T({\mathbb R}_W, e^x)$ , where ${\mathbb R}_W$ is the reals expanded by a convergent Weierstrass system W. Of these, those we call trigonometric-exponential fields are given particular attention. It is shown that the exponential functions on the initial trigonometric-exponential subfields of ${\mathbf {No}}$ , which includes ${\mathbf {No}}$ itself, extend to canonical exponential functions on their surcomplex counterparts. The image of the canonical map of the ordered exponential field ${\mathbb T}^{LE}$ of logarithmic-exponential transseries into ${\mathbf {No}}$ is shown to be initial, as are the ordered exponential fields ${\mathbb R}((\omega ))^{EL}$ and ${\mathbb R}\langle \langle \omega \rangle \rangle $ .

[1]  R. Hodel An Introduction to Mathematical Logic , 1995 .

[2]  Lou van den Dries,et al.  Fields of surreal numbers and exponentiation , 2001 .

[3]  Jan. 9–Jan,et al.  Combinatorial Game Theory , 2022 .

[4]  Philip Ehrlich Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.

[5]  Antongiulio Fornasiero,et al.  Embedding Henselian fields into power series , 2006 .

[6]  A. Berarducci,et al.  Transseries as germs of surreal functions , 2017, Transactions of the American Mathematical Society.

[7]  Philip Ehrlich Absolutely saturated models , 1989 .

[8]  Philip Ehrlich Conway names, the simplicity hierarchy and the surreal number tree , 2011, J. Log. Anal..

[9]  Philip Ehrlich,et al.  An alternative construction of Conway's ordered field No , 1988 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Michael Ch. Schmeling,et al.  Corps de transseries , 2001 .

[12]  Saharon Shelah,et al.  Exponentiation in power series fields , 1996 .

[13]  S. Kuhlmann,et al.  Real closed exponential fields , 2011, 1112.4062.

[14]  Lou van den Dries On the Elementary Theory of Restricted Elementary Functions , 1988, J. Symb. Log..

[15]  Philip Ehrlich,et al.  The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.

[16]  Angus Macintyre,et al.  Logarithmic‐Exponential Power Series , 1997 .

[17]  H. Gonshor An Introduction to the Theory of Surreal Numbers , 1986 .

[18]  N. L. Alling,et al.  Foundations of Analysis Over Surreal Number Fields , 2012 .

[19]  A. Macintyre,et al.  The Elementary Theory of Restricted Analytic Fields with Exponentiation , 1994 .

[20]  John H. Conway On numbers and games, Second Edition , 2001 .

[21]  L. Lipshitz,et al.  Ultraproducts and approximation in local rings I , 1979 .

[22]  H. Hahn,et al.  Über die nichtarchimedischen Größensysteme , 1995 .

[23]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[24]  Antongiulio Fornasiero Integration on surreal numbers , 2004 .

[25]  A. Berarducci,et al.  Mini-Workshop: Surreal Numbers, Surreal Analysis, Hahn Fields and Derivations , 2017 .

[26]  L. Dries,et al.  The surreal numbers as a universal $H$-field , 2015, Journal of the European Mathematical Society.

[27]  Salma Kuhlmann,et al.  Ordered exponential fields , 1999 .

[28]  L. Dries A generalization of the Tarski-Seidenberg theorem, and some nondefinability results , 1986 .

[29]  J. Hoeven,et al.  Defining a surreal hyperexponential , 2020 .

[30]  Hassan Sfouli On the Elementary Theory of Restricted Real and Imaginary Parts of Holomorphic Functions , 2012, Notre Dame J. Formal Log..

[31]  A. Berarducci,et al.  Surreal numbers, derivations and transseries , 2015, 1503.00315.

[32]  Hans Hermes,et al.  Introduction to mathematical logic , 1973, Universitext.

[33]  Marcus Tressl,et al.  Comparison of exponential‐logarithmic and logarithmic‐exponential series , 2011, Math. Log. Q..

[34]  Philip Ehrlich,et al.  Number Systems with Simplicity Hierarchies: a Generalization of Conway's Theory of surreal numbers II , 2018, J. Symb. Log..

[35]  August Pfizmaier,et al.  Sitzungsberichte der kaiserlichen Akademie der Wissenschaften , 1875 .

[36]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[37]  H. Friedman,et al.  Integration on the Surreals: a Conjecture of Conway, Kruskal and Norton , 2015, 1505.02478.

[38]  B. H. Neumann,et al.  On ordered division rings , 1949 .

[39]  κ-bounded Exponential-Logarithmic Power Series Fields ∗ , 2004 .

[40]  Jan Denef,et al.  P-adic and real subanalytic sets , 1988 .

[41]  Jean-Pierre Ressayre,et al.  Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..