Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site

We developed a Bayesian model to invert magnetotelluric (MT) data using a 2D sharp boundary parameterization. We divided the 2D cross section into layers and considered the locations of interfaces and resistivity of the regions formed by the interfaces as random variables. We assumed that those variables are independent in the vertical direction and dependent along the lateral direction, whose spatial dependence is described by either pairwise difference or multivariate Gaussian priors. We used a parallel, adaptive finite-element algorithm to rapidly forward simulate frequency-domain MT responses of the 2D resistivity structure and used Markov chain Monte Carlo methods to draw many samples from the joint posterior probability distribution. We applied the Bayesian model to a synthetic case that mimics a geothermal exploration scenario. Our results demonstrated that the developed method is effective in estimating the resistivity and depths to interfaces and in quantifying uncertainty on the estimates. We also applied the developed method to the field MT data collected from the Darajat geothermal site in Indonesia. We compared our inversion results with those obtained from a deterministic inversion of 3D MT data; they are consistent even if the two inversion methods are very different and the amount of information used for inversion is different.

[1]  M. Sambridge,et al.  Seismic tomography with the reversible jump algorithm , 2009 .

[2]  T. Dahlin,et al.  A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys , 2001 .

[3]  J. T. Smith,et al.  Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .

[4]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[5]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.

[6]  Gerald W. Hohmann,et al.  Magnetotelluric responses of three-dimensional bodies in layered earths , 1982 .

[7]  Miguel Bosch,et al.  The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction , 2004 .

[8]  J. Sethian,et al.  3-D traveltime computation using the fast marching method , 1999 .

[9]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[10]  Andreas Kemna,et al.  A comparison between Gauss-Newton and Markov-chain Monte Carlo–based methods for inverting spectral induced-polarization data for Cole-Cole parameters , 2008 .

[11]  M. Bosch Lithologic tomography: From plural geophysical data to lithology estimation , 1999 .

[12]  G. Newman,et al.  Three-dimensional magnetotelluric characterization of the Coso geothermal field , 2008 .

[13]  Andreas Kemna,et al.  “A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole-Cole parameters,” GEOPHYSICS, 73, no. 6, F247–F259 , 2009 .

[14]  Jeffrey S. Ovall,et al.  A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling , 2011 .

[15]  Frank Morrison,et al.  Sharp boundary inversion of 2D magnetotelluric data , 1999 .

[16]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[17]  K. Singha,et al.  Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities , 2010 .

[18]  Tapan Mukerji,et al.  Stochastic reservoir characterization using prestack seismic data , 2004 .

[19]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[20]  Y. Rubin,et al.  A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data , 2007 .

[21]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[22]  Steven Constable,et al.  Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts , 2004 .

[23]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[24]  Whitney Trainor-Guitton,et al.  Stochastic inversion for electromagnetic geophysics: Practical challenges and improving convergence efficiency , 2011 .

[25]  T. Dahlin,et al.  A comparison of smooth and blocky inversion methods in 2-D electrical imaging surveys , 2001 .

[26]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[27]  Chester J. Weiss,et al.  Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example , 2005 .

[28]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[29]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[30]  James Gunning,et al.  Delivery: an open-source model-based Bayesian seismic inversion program , 2004, Comput. Geosci..

[31]  Kerry Key,et al.  2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .

[32]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[33]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[34]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[35]  S. Rejeki,et al.  Geologic Conceptual Model Update of the Darajat Geothermal Field, Indonesia , 2010 .

[36]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[37]  I. Roy A robust descent type algorithm for geophysical inversion through adaptive regularization , 2002 .

[38]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[39]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[40]  Dinesh Manocha,et al.  Applied Computational Geometry Towards Geometric Engineering , 1996, Lecture Notes in Computer Science.

[41]  Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields , 2012 .

[42]  Oliver Kuras,et al.  Recent developments in the direct-current geoelectrical imaging method , 2013 .

[43]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[44]  Esben Auken,et al.  Layered and laterally constrained 2D inversion of resistivity data , 2004 .

[45]  Jinsong Chen,et al.  Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints , 2010 .

[47]  Joint Inversion of Marine Seismic AVA And CSEM Data Using Statistical Rock-physics Models And Markov Random Fields , 2009 .

[48]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[49]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[50]  Gregory A. Newman,et al.  A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data , 2013, Surveys in Geophysics.

[51]  W. Cumming GEOTHERMAL RESOURCE CONCEPTUAL MODELS USING SURFACE EXPLORATION DATA , 2009 .

[52]  G. Michael Hoversten,et al.  Marine magnetotellurics for petroleum exploration, Part II: Numerical analysis of subsalt resolution , 1998 .