A SVM-PSO Classifier for Robot Motion in Environment with Obstacles

Support vector machines (SVM) is a popular method of classification problems. In this study, the sensor data obtained from the movement of the robot SCITOS G5 along the road is classified. Sensor data includes numerical values of the movements of the robot against obstacles. C and Gamma values were optimized with Particle Swarm Optimization (PSO) from the most important parameters affecting the accuracy of classification in SVMs and the most appropriate values were used. In this paper, it has been investigated whether any robot can exhibit humanoid movements with SVM method against an obstacle.

[1]  Bijaya K. Panigrahi,et al.  A hybrid SVM-PSO model for forecasting monthly streamflow , 2013, Neural Computing and Applications.

[2]  Munir Ahmad,et al.  SVM Optimization for Sentiment Analysis , 2018 .

[3]  Jaime Carbonell,et al.  On the parameter optimization of Support Vector Machines for binary classification , 2012, J. Integr. Bioinform..

[4]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[7]  Yuan Luo,et al.  Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm , 2017, Sensors.

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  Yongquan Zhou,et al.  Twin support vector machines: A survey , 2018, Neurocomputing.

[10]  Cheng-Lung Huang,et al.  A distributed PSO-SVM hybrid system with feature selection and parameter optimization , 2008, Appl. Soft Comput..

[11]  Nicholas G. Polson,et al.  Data augmentation for support vector machines , 2011 .

[13]  M. Yasin Özsağlam,et al.  Optimizasyon Problemlerinin Çözümü için Parçaçık Sürü Optimizasyonu Algoritması , 2008 .

[14]  L. A. Demidova,et al.  The SVM Classifier Based on the Modified Particle Swarm Optimization , 2016, ArXiv.

[15]  Mehmet BAYGIN,et al.  PSO Based Path Planning Approach for Multi Service Robots in Dynamic Environments , 2018, 2018 International Conference on Artificial Intelligence and Data Processing (IDAP).

[16]  Şenol Erdoğmuş,et al.  Destek Vektör Makineleriyle Sınıflandırma Problemlerinin Çözümü İçin Çekirdek Fonksiyonu Seçimi , 2014 .

[17]  Kurt Hornik,et al.  The support vector machine under test , 2003, Neurocomputing.

[18]  D. Hardin,et al.  Using SVM Weight-Based Methods to Identify Causally Relevant and Non-Causally Relevant Variables , 2006 .