Radiation-pressure cooling and optomechanical instability of a micromirror

[1]  L. Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[2]  T. Briant,et al.  Beating quantum limits in optomechanical sensor by cavity detuning , 2006, quant-ph/0602040.

[3]  T. Briant,et al.  Entangling movable mirrors in a double-cavity system , 2005, quant-ph/0507275.

[4]  M. M. Casey,et al.  Upper limits on a stochastic background of gravitational waves. , 2005, Physical review letters.

[5]  Pierre-Francois Cohadon,et al.  Optical monitoring and cooling of a micro-mechanical oscillator to the quantum limit , 2005, SPIE Microtechnologies.

[6]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[7]  Pierre-Francois Cohadon,et al.  Optical monitoring and cooling of a micro-mechanical oscillator to the quantum limit (Invited Paper) , 2005, SPIE International Symposium on Fluctuations and Noise.

[8]  D. Blair,et al.  Parametric instabilities and their control in advanced interferometer gravitational-wave detectors. , 2005, Physical review letters.

[9]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[10]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[11]  David E. McClelland,et al.  Observation and characterization of an optical spring , 2004 .

[12]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[13]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[14]  M. Roukes,et al.  Nanoelectromechanical systems: Nanodevice motion at microwave frequencies , 2003, Nature.

[15]  A. Pai,et al.  Radiation pressure induced instabilities in laser interferometric detectors of gravitational waves , 2000, gr-qc/0011099.

[16]  P. Cohadon,et al.  Cooling of a Mirror by Radiation Pressure , 1999, quant-ph/9903094.

[17]  M. Pinard,et al.  High-sensitivity optical measurement of mechanical Brownian motion , 1999, quant-ph/9901056.

[18]  Benno Willke,et al.  EXPERIMENTAL DEMONSTRATION OF A SUSPENDED DUAL RECYCLING INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION , 1998 .

[19]  P. Knight,et al.  Preparation of nonclassical states in cavities with a moving mirror , 1997, quant-ph/9708002.

[20]  A. Heidmann,et al.  Quantum nondemolition measurement by optomechanical coupling , 1997 .

[21]  Reynaud,et al.  Quantum-noise reduction using a cavity with a movable mirror. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[22]  S. Reynaud,et al.  Quantum Limits in Interferometric Measurements , 1990, quant-ph/0101104.

[23]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[24]  P. Meystre,et al.  Optical bistability and mirror confinement induced by radiation pressure , 1983 .

[25]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[26]  A. B. Manukin,et al.  Investigation of dissipative Ponderomotive effects of electromagnetic radiation , 1970 .

[27]  R. Kubo The fluctuation-dissipation theorem , 1966 .