Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels

We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influence on the entanglement dynamics due to the sensitive time dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case.

[1]  Entanglement dynamics of qubits in a common environment , 2006, quant-ph/0604020.

[2]  David Vitali,et al.  Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir. , 2007, Physical review letters.

[3]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[4]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[5]  Timothy C. Ralph,et al.  Experimental investigation of continuous-variable quantum teleportation , 2002, quant-ph/0207179.

[6]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[7]  M. Ban Decoherence in phase-preserving linear dissipative processes , 2006 .

[8]  Entanglement oscillations in non-Markovian quantum channels , 2007, quant-ph/0702055.

[9]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[10]  F. Illuminati,et al.  Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states , 2005, quant-ph/0506124.

[11]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[12]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Y. Yamamoto,et al.  Electron entanglement via a quantum dot. , 2001, Physical review letters.

[15]  M. Koashi,et al.  Experimental extraction of an entangled photon pair from two identically decohered pairs , 2003, Nature.

[16]  Quang,et al.  Localization of Superradiance near a Photonic Band Gap. , 1995, Physical review letters.

[17]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[18]  Paz,et al.  Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise. , 1992, Physical review. D, Particles and fields.

[19]  Decoherence induced by electron accumulation in a quantum measurement of charge qubits , 2005, cond-mat/0511281.

[20]  J. Raimond,et al.  Generation of Einstein-Podolsky-Rosen Pairs of Atoms , 1997 .

[21]  A. A. Budini Non-Poissonian intermittent fluorescence from complex structured environments , 2006 .

[22]  M. Kim,et al.  Non-Markovian decoherence: complete positivity and decomposition , 2005 .

[23]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[24]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[25]  Jakub S. Prauzner-Bechcicki,et al.  LETTER TO THE EDITOR: Two-mode squeezed vacuum state coupled to the common thermal reservoir , 2002 .

[26]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[27]  R. Feynman,et al.  The Theory of a general quantum system interacting with a linear dissipative system , 1963 .

[28]  Photon correlation versus interference of single-atom fluorescence in a half-cavity. , 2006, Physical review letters.

[29]  B. Hu,et al.  Two-Level Atom-Field Interaction: Exact Master Equations for Non-Markovian Dynamics, Decoherence and Relaxation , 1999, quant-ph/9901078.

[30]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .

[31]  Kuan-Liang Liu,et al.  Non-markovian entanglement dynamics of quantum continuous variable systems in thermal environments , 2007, 0706.0996.

[32]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[33]  Masashi Ban,et al.  Decoherence of continuous variable quantum information in non-Markovian channels , 2006 .

[34]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[35]  H. J. Kimble,et al.  Quantum teleportation of light beams , 2003 .

[36]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[37]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[38]  G. Falci,et al.  Initial decoherence in solid state qubits. , 2005, Physical review letters.

[39]  F. Illuminati,et al.  Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence , 2005, quant-ph/0512124.

[40]  Two cavity modes in a dissipative environment: Cross decay rates and robust states , 2004, quant-ph/0410200.

[41]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[42]  H. Carmichael An open systems approach to quantum optics , 1993 .

[43]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[44]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[45]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[46]  Entanglement production and decoherence-free subspace of two single-mode cavities embedded in a common environment , 2005, quant-ph/0505087.

[47]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.