Shape gradients for the failure probability of a mechanical component under cyclical loading

This work provides a numerical calculation of shape gradients of failure probabilities for mechanical components using a first discretize, then adjoint approach. While deterministic life prediction models for failure mechanisms are not (shape) differentiable, this changes in the case of probabilistic life prediction. The probabilistic, or reliability based, approach thus opens the way for efficient adjoint methods in the design for mechanical integrity. In this work we propose, implement and validate a method for the numerical calculation of the shape gradients of failure probabilities for the failure mechanism low cycle fatigue (LCF), which applies to polycrystalline metal. Numerical examples range from a bended rod to a complex geometry from a turbo charger in 3D.

[1]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[2]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[3]  Sebastian Schmitz,et al.  Risk estimation for LCF crack initiation , 2013, 1302.2909.

[4]  Didier Sornette,et al.  The Physical Origin of the Coffin-Manson Law in Low-Cycle Fatigue , 1992 .

[5]  H. Neuber Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law , 1961 .

[6]  Joachim Rösler,et al.  Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites , 2007 .

[7]  Hanno Gottschalk,et al.  Combined Notch and Size Effect Modeling in a Local Probabilistic Approach for LCF , 2017, 1709.00320.

[8]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[9]  Kathrin Klamroth,et al.  Adjoint Method to Calculate the Shape Gradients of Failure Probabilities for Turbomachinery Components , 2018, Volume 7A: Structures and Dynamics.

[10]  Shinzo Watanabe On discontinuous additive functionals and Lévy measures of a Markov process , 1964 .

[11]  Hanno Gottschalk,et al.  Probabilistic Analysis of LCF Crack Initiation Life of a Turbine Blade under Thermomechanical Loading , 2013 .

[12]  Sebastian Schmitz,et al.  Minimal Failure Probability for Ceramic Design Via Shape Control , 2013, J. Optim. Theory Appl..

[13]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[14]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[15]  Jinchao Xu,et al.  Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids , 2007, SIAM J. Numer. Anal..

[16]  H. Gottschalk,et al.  Probabilistic Schmid factors and scatter of LCF life , 2014 .

[17]  Hanno Gottschalk,et al.  A probabilistic model for LCF , 2013, 1308.5842.

[18]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[19]  T. Seeger,et al.  A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains, Part 2: Application and General Discussion , 1985 .

[20]  Angelika Brückner-Foit,et al.  STAU - a general-purpose tool for probabilistic reliability assessment of ceramic components under multiaxial loading , 2013 .

[21]  W. Weibull A statistical theory of the strength of materials , 1939 .

[22]  Michael Vormwald,et al.  Statistical and geometrical size effects in notched members based on weakest-link and short-crack modelling , 2012 .

[23]  J. G. Crose,et al.  A Statistical Theory for the Fracture of Brittle Structures Subjected to Nonuniform Polyaxial Stresses , 1974 .

[24]  L. P. Borrego,et al.  Analysis of low cycle fatigue in AlMgSi aluminium alloys , 2004 .

[25]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[26]  Gerald R. Leverant,et al.  A Probabilistic Approach to Aircraft Turbine Rotor Material Design , 1997 .

[27]  H. Gottschalk,et al.  Numerical Shape Optimization to Decrease Failure Probability of Ceramic Structures , 2018, Comput. Vis. Sci..

[28]  Grégoire Allaire,et al.  Numerical analysis and optimization , 2007 .

[29]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[30]  Michael Vormwald,et al.  Ermüdungsfestigkeit Grundlagen für Ingenieure , 2007 .

[31]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[32]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[33]  Pekka Neittaanmäki,et al.  Existence for Shape Optimization Problems in Arbitrary Dimension , 2002, SIAM J. Control. Optim..

[34]  吳在熙 CERAMICS , 1986, Arkansas Made, Volume 1.

[35]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .