Comparison of Estimators of the Weibull Distribution

We compare the small sample performance (in terms of bias and root mean squared error) of the L-moment estimator of a three-parameter Weibull distribution with maximum likelihood estimation (MLE), moment estimation (MoE), least-square estimation (LSE), the modified MLE (MMLE), the modified MoE (MMoE), and the maximum product of spacing (MPS). Overall, the LM method has a tendency to perform well as it is almost always close to the best method of estimation. The ML performance is remarkable even at a small sample size of n = 10 when the shape parameter β lies in the [1.5, 4] range. The MPS estimator dominates others when 0.5 ≤ β < 1.5. For large β ≥ 6, MMLE outweighs others in samples of size n ≥ 50, whereas LM is preferred in samples of size n ≤ 20.

[1]  Alfred A. Bartolucci,et al.  Applying medical survival data to estimate the three-parameter Weibull distribution by the method of probability-weighted moments , 1999 .

[2]  Tie Su,et al.  SKEWNESS AND KURTOSIS IN S&P 500 INDEX RETURNS IMPLIED BY OPTION PRICES , 1996 .

[3]  James K. Hammitt,et al.  Effects of Disease Type and Latency on the Value of Mortality Risk , 2003 .

[4]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[5]  Tie Su,et al.  Implied Volatility Skews and Stock Index Skewness and Kurtosis Implied by S&P 500 Index Option Prices , 1997 .

[6]  Y. Goda,et al.  INCORPORATION OF WEIBULL DISTRIBUTION IN L-MOMENTS METHOD FOR , 2011 .

[7]  Tie Su,et al.  S&P 500 index option tests of Jarrow and Rudd's approximate option valuation formula , 1996 .

[8]  J. Lieblein,et al.  Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings , 1956 .

[9]  H. J. Carper,et al.  Some Considerations In Rolling Fatigue Evaluation , 1972 .

[10]  J. R. Wallis,et al.  Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .

[11]  Betty Jones Whitten,et al.  Modified maximum likelihood and modified moment estimators for the three-parameter weibull distribution , 1982 .

[12]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[13]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[14]  Wayne Nelson,et al.  Weibull Probability Papers , 1971 .

[15]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[16]  Richard A. Johnson,et al.  Sampling properties of estimators of a Weibull distribution of use in the lumber industry , 1983 .

[17]  Howard E. Rockette,et al.  Maximum Likelihood Estimation with the Weibull Model , 1974 .

[18]  Stelios H. Zanakis,et al.  Extended Pattern Search with Transformations for the Three-Parameter Weibull MLE Problem , 1979 .

[19]  Miguel Ángel Martínez,et al.  Return period maps of dry spells for Catalonia (northeastern Spain) based on the Weibull distribution / Périodes de retour des périodes sèches en Catalogne (nord-est de l'Espagne) à partir de la distribution de Weibull , 2008 .

[20]  J. R. Wallis,et al.  Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .

[21]  J. McCool INFERENCE ON THE WEIBULL LOCATION PARAMETER , 1998 .

[22]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[23]  Ding Jing,et al.  Expressions relating probability weighted moments to parameters of several distributions inexpressible in inverse form , 1989 .

[24]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[25]  Francis A. Roesch,et al.  Bayesian estimation for the three-parameter Weibull distribution with tree diameter data , 1994 .

[26]  Antoni Drapella Weibull probability paper used on highly stressed bimodal components , 1985 .

[27]  R. W. Donaldson Calculating inverse cv, skew and pwm functions for pearson-3, log-normal, extreme-value and log-logistic distributions , 1996 .

[28]  H. N. Nagaraja,et al.  Order Statistics, Third Edition , 2005, Wiley Series in Probability and Statistics.