Efficient Bregman Projections onto the Permutahedron and Related Polytopes
暂无分享,去创建一个
[1] H. D. Brunk,et al. Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .
[2] Manuel Blum,et al. Time Bounds for Selection , 1973, J. Comput. Syst. Sci..
[3] P. Brucker. Review of recent development: An O( n) algorithm for quadratic knapsack problems , 1984 .
[4] S. Fujishige. Submodular systems and related topics , 1984 .
[5] H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .
[6] Michael J. Best,et al. Minimizing Separable Convex Functions Subject to Simple Chain Constraints , 1999, SIAM J. Optim..
[7] Ravindra K. Ahuja,et al. A Fast Scaling Algorithm for Minimizing Separable Convex Functions Subject to Chain Constraints , 2001, Oper. Res..
[8] Yoram Singer,et al. Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.
[9] Masayuki Takeda,et al. Online Linear Optimization over Permutations , 2011, ISAAC.
[10] Elad Hazan. The convex optimization approach to regret minimization , 2011 .
[11] Shuji Kijima,et al. Online Prediction under Submodular Constraints , 2012, ALT.
[12] Francis R. Bach,et al. Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..
[13] Weijie J. Su,et al. Statistical estimation and testing via the sorted L1 norm , 2013, 1310.1969.
[14] Nir Ailon,et al. Improved Bounds for Online Learning Over the Permutahedron and Other Ranking Polytopes , 2014, AISTATS.
[15] Andre Martins,et al. Orbit Regularization , 2014, NIPS.
[16] Xiangrong Zeng,et al. The Ordered Weighted $\ell_1$ Norm: Atomic Formulation, Projections, and Algorithms , 2014, 1409.4271.
[17] Alexandre M. Bayen,et al. Efficient Bregman projections onto the simplex , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).
[18] Weiran Wang,et al. Projection onto the capped simplex , 2015, ArXiv.
[19] Michel X. Goemans,et al. Smallest compact formulation for the permutahedron , 2015, Math. Program..
[20] Nir Ailon,et al. Bandit online optimization over the permutahedron , 2013, Theor. Comput. Sci..