Longitudinal Change Detection: Inference on the Diffusion Tensor Along White-Matter Pathways

Diffusion tensor magnetic resonance imaging (DT-MRI) tractography allows to probe brain connections in vivo. This paper presents a change detection framework that relies on white-matter pathways with application to neuromyelitis optica (NMO). The objective is to detect global or local fiber diffusion property modifications between two longitudinal DT-MRI acquisitions of a patient. To this end, estimation and testing tools on tensors along the white-matter pathways are considered. Two tests are implemented: a pointwise test that compares at each sampling point of the fiber bundle the tensor populations of the two exams in the cross section of the bundle and a fiberwise test that compares paired tensors along all the fiber bundle. Experiments on both synthetic and real data highlight the benefit of considering fiber based statistical tests compared to the standard voxelwise strategy.

[1]  Jean-Paul Armspach,et al.  White Matter Atrophy and Cognitive Dysfunctions in Neuromyelitis Optica , 2012, PloS one.

[2]  N. Ayache,et al.  Clinical DT-MRI Estimation, Smoothing, and Fiber Tracking With Log-Euclidean Metrics , 2007 .

[3]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[4]  Alain Trouvé,et al.  Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents , 2011, NeuroImage.

[5]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[6]  J. D. Sèze,et al.  La BCcogSEP : une batterie courte d'évaluation des fonctions cognitives destinées aux patients souffrant de sclérose en plaques , 2004 .

[7]  J. Kurtzke Rating neurologic impairment in multiple sclerosis , 1983, Neurology.

[8]  B. Weinshenker,et al.  Revised diagnostic criteria for neuromyelitis optica , 2006, Neurology.

[9]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[10]  M. Catani,et al.  Diffusion-based tractography in neurological disorders: concepts, applications, and future developments , 2008, The Lancet Neurology.

[11]  P. Poulet,et al.  Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging , 2006, Journal of neuroscience research.

[12]  Gengsheng Qin,et al.  Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test , 2008, Statistical methods in medical research.

[13]  David H. Laidlaw,et al.  Tract-Based Probability Densities of Diffusivity Measures in DT-MRI , 2010, MICCAI.

[14]  Qiyong Gong,et al.  Cognitive impairment and whole brain diffusion in patients with neuromyelitis optica after acute relapse , 2011, Brain and Cognition.

[15]  Roland G. Henry,et al.  Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters , 2006, NeuroImage.

[16]  Susumu Mori,et al.  Introduction to Diffusion Tensor Imaging , 2007 .

[17]  Fabrice Heitz,et al.  Retrospective evaluation of a topology preserving non-rigid registration method , 2006, Medical Image Anal..

[18]  Olivier Clatz,et al.  DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential , 2009, IEEE Transactions on Medical Imaging.

[19]  Frédéric Blanc,et al.  Cognitive functions in neuromyelitis optica. , 2008, Archives of neurology.

[20]  Wesley K. Thompson,et al.  Bias in tensor based morphometry Stat-ROI measures may result in unrealistic power estimates , 2011, NeuroImage.

[21]  David H. Laidlaw,et al.  Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method , 2008, IEEE Transactions on Visualization and Computer Graphics.

[22]  Fabrice Heitz,et al.  Generalized likelihood ratio tests for change detection in diffusion tensor images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[23]  R. Dougherty,et al.  Group Comparison of Eigenvalues and Eigenvectors of Diffusion Tensors , 2010, Journal of the American Statistical Association.

[24]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[25]  Brandon Whitcher,et al.  Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging , 2008, Human brain mapping.

[26]  Guido Gerig,et al.  Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. , 2006, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention.

[27]  Jean-Francois Mangin,et al.  Coordinate-based versus structural approaches to brain image analysis , 2004, Artif. Intell. Medicine.

[28]  Roland G. Henry,et al.  Whole brain voxel-wise analysis of single-subject serial DTI by permutation testing , 2008, NeuroImage.

[29]  Fabrice Heitz,et al.  Change Detection in Diffusion MRI Using Multivariate Statistical Testing on Tensors , 2010, MICCAI.