Anisotropy in multi-offset deep-crustal seismic experiments

Modelling of deep-seismic wide-angle data commonly assumes that the Earth is heterogeneous and isotropic. It is important to know the magnitudes of errors that may be introduced by isotropic-based wide-angle models when the Earth is anisotropic. It is equally important to find ways of detecting anisotropy and determining its properties.  This paper explores the errors introduced by interpreting anisotropic seismic data with isotropic models. Errors in P-wave reflector depths are dependent on the magnitude of the velocity anisotropy and the direction of the fast axis. The interpreted, isotropic, model velocity function is found to correspond closely to the horizontal velocity of the anisotropic medium. An additional observed parameter is the time mismatch, which we define to be the difference between the vertical two-way traveltime to a reflector and the time-converted wide-angle position of the reflector. The magnitude of the time mismatch is typically <1.0 s (when the whole crust is anisotropic) and is found to be closely related to the magnitude and sign of the anisotropic anellipticity. The relationships are extendible to more complicated models, including those with vertical velocity gradients, crustal zonation, and lower symmetry orders.  A time mismatch may be symptomatic of the presence of anisotropy. We illustrate the observation of a time mismatch for a real multi-offset seismic data set collected north of Scotland and discuss the implications for crustal anisotropy in that region.

[1]  F. Hron,et al.  Reflection and transmission coefficients for seismic waves in ellipsoidally anisotropic media , 1979 .

[2]  L. Thomsen Weak elastic anisotropy , 1986 .

[3]  I. Tsvankin P-wave signatures and notation for transversely isotropic media: An overview , 1996 .

[4]  S. Crampin An introduction to wave propagation in anisotropic media , 1984 .

[5]  Ilya Tsvankin,et al.  Nonhyperbolic reflection moveout in anisotropic media , 1994 .

[6]  G. W. Postma Wave propagation in a stratified medium , 1955 .

[7]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[8]  M. Warner,et al.  Seismic velocity, heterogeneity, and the composition of the lower crust , 1996 .

[9]  C. Sayers Inversion of ultrasonic wave velocity measurements to obtain the microcrack orientation distribution function in rocks , 1988 .

[10]  M. Sambridge,et al.  Genetic algorithms in seismic waveform inversion , 1992 .

[11]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[12]  O. Nishizawa SEISMIC VELOCITY ANISOTROPY IN A MEDIUM CONTAINING ORIENTED CRACKS , 1982 .

[13]  Philip Wild,et al.  The range of effects of azimuthal isotropy and EDA anisotropy in sedimentary basins , 1991 .

[14]  Ilya Tsvankin,et al.  Anisotropic parameters and P-wave velocity for orthorhombic media , 1997 .

[15]  Donald F. Winterstein,et al.  Velocity anisotropy terminology for geophysicists , 1990 .

[16]  S. Crampin SUGGESTIONS FOR A CONSISTENT TERMINOLOGY FOR SEISMIC ANISOTROPY , 1989 .

[17]  C. Sayers,et al.  The elastic anisotrophy of shales , 1994 .

[18]  Leon Thomsen,et al.  Reflection seismology over azimuthally anisotropic media , 1988 .

[19]  F. K. Levin,et al.  THE REFLECTION, REFRACTION, AND DIFFRACTION OF WAVES IN MEDIA WITH AN ELLIPTICAL VELOCITY DEPENDENCE , 1978 .

[20]  I. Tsvankin Reflection moveout and parameter estimation for horizontal transverse isotropy , 1997 .

[21]  P. Berge Constraints on elastic parameters and implications for lithology on VTI media , 1995 .

[22]  Stuart Crampin,et al.  A review of wave motion in anisotropic and cracked elastic-media , 1981 .

[23]  S. Crampin Evidence for aligned cracks in the Earth's crust , 1985 .

[24]  R. James Brown,et al.  Orthorhombic anisotropy: A physical seismic modeling study , 1991 .

[25]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[26]  S. Elming Integrated seismic studies of the Baltic shield using data in the Gulf of Bothnia region , 1993 .

[27]  James G. Berryman,et al.  Long-wave elastic anisotropy in transversely isotropic media , 1979 .

[28]  M. Warner,et al.  COINCIDENT NORMAL-INCIDENCE AND WIDE-ANGLE REFLECTIONS FROM THE MOHO : EVIDENCE FOR CRUSTAL SEISMIC ANISOTROPY , 1996 .

[29]  R. White,et al.  Magmatism at rift zones: The generation of volcanic continental margins and flood basalts , 1989 .

[30]  W. Griffin,et al.  Is the continental Moho the crust-mantle boundary? , 1987 .

[31]  Kevin B. Jones,et al.  Seismic reflections from the mantle represent relict subduction zones within the continental lithosphere , 1996 .

[32]  N. Christensen,et al.  A determination of the three‐dimensional seismic properties of anorthosite: Comparison between values calculated from the petrofabric and direct laboratory measurements , 1993 .

[33]  K. Fuchs,et al.  Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations , 1971 .

[34]  R. Hobbs,et al.  The BIRPS Atlas , 1992 .