Auxetic frameworks inspired by cubic crystals

Abstract In this work we show that a structure consisting of a network of bending beams can exhibit a negative Poisson’s ratio. We have shown that the negative Poisson’s ratio behaviour is driven by the (bcc analogous) type III beams, the type II (fcc like) beams result in a structure with a Poisson’s ratio of around zero and type I (simple cubic configuration) beams result in a Poisson’s ratio of nearly +1. The tensile and shear strengths of the type III beams are augmented by addition of type II and type III beams. By tailoring the relative stiffness of the component beams within the structure it is possible to design an auxetic truss structure with specific Poisson’s ratio, tensile and shear moduli. This validates the hypothesis that crystal structures can provide inspiration for macro structures with tailored mechanical properties where the mechanism for negative Poisson’s ratio (auxetic) behaviour at the atomic scale in cubic crystals is replicated by bending beams.

[1]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[2]  Y. Ishibashi,et al.  A Microscopic Model of a Negative Poisson's Ratio in Some Crystals , 2000 .

[3]  Douglas T. Queheillalt,et al.  Pyramidal lattice truss structures with hollow trusses , 2005 .

[4]  Zoe A. D. Lethbridge,et al.  Direct, static measurement of single-crystal Young's moduli of the zeolite natrolite: Comparison with dynamic studies and simulations , 2006 .

[5]  Andrew Alderson,et al.  Molecular origin of auxetic behavior in tetrahedral framework silicates. , 2002, Physical review letters.

[6]  Paraskevas Papanikos,et al.  Finite element modeling of single-walled carbon nanotubes , 2005 .

[7]  M. Ashby,et al.  Effective properties of the octet-truss lattice material , 2001 .

[8]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[9]  J. Parise,et al.  Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.

[10]  F. Milstein,et al.  Existence of a negative Poisson ratio in fcc crystals , 1979 .

[11]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[12]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[13]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[14]  Haydn N. G. Wadley,et al.  Cellular metal lattices with hollow trusses , 2005 .

[15]  Tungyang Chen,et al.  Poisson's ratio for anisotropic elastic materials can have no bounds , 2005 .

[16]  K. Tserpes,et al.  Equivalent beams for carbon nanotubes , 2008 .

[17]  K. Evans,et al.  Models for the elastic deformation of honeycombs , 1996 .

[18]  L. Xiaoming,et al.  Theoretical Strength of Face-Centred-Cubic Single Crystal Copper Based on a Continuum Model , 2009 .

[19]  M. Meyers,et al.  On the negative poisson ratio in monocrystalline zinc , 1999 .

[20]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[21]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[22]  Ji Su,et al.  Atomistic finite elements applicable to solid polymers , 2006 .

[23]  Manjula Jain,et al.  Poisson's ratios in cubic crystals corresponding to (110) loading , 1990 .

[24]  Jong Wan Hu,et al.  Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads , 2006 .

[25]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[26]  Stefanie Chiras,et al.  The structural performance of near-optimized truss core panels , 2002 .

[27]  Joseph N. Grima,et al.  On the origin of auxetic behaviour in the silicate α-cristobalite , 2005 .

[28]  V. Heine,et al.  The Determination of Rigid-Unit Modes as Potential Soft Modes for Displacive Phase Transitions in Framework Crystal Structures , 1993 .

[29]  Ruben Gatt,et al.  Truss‐type systems exhibiting negative compressibility , 2008 .

[30]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[31]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[32]  Ruben Gatt,et al.  On the Auxetic Properties of 'Rotating Rectangles' with Different Connectivity , 2005 .

[33]  John W. Hutchinson,et al.  Optimal truss plates , 2001 .

[34]  Lallit Anand,et al.  A computational study of the mechanical behavior of nanocrystalline fcc metals , 2006 .