Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction.

Glycosylation is a ubiquitous modification of lipids and proteins. Despite the essential contribution of glycoconjugates to the viability of all living organisms, diseases of glycosylation in humans have only been identified over the past few decades. The recent development of next-generation DNA sequencing techniques has accelerated the pace of discovery of novel glycosylation defects. The description of multiple mutations across glycosylation pathways not only revealed tremendous diversity in functional impairments, but also pointed to phenotypic similarities, emphasizing the interconnected flow of substrates underlying glycan assembly. The current list of 100 known glycosylation disorders provides an overview of the significance of glycosylation in human development and physiology.

[1]  Kelley W. Moremen,et al.  Vertebrate protein glycosylation: diversity, synthesis and function , 2012, Nature Reviews Molecular Cell Biology.

[2]  Ajit Varki,et al.  Oligosaccharides in vertebrate development , 1995 .

[3]  H. Freeze,et al.  Correction of leukocyte adhesion deficiency type II with oral fucose. , 1999, Blood.

[4]  A. Kastaniotis,et al.  Human RFT1 deficiency leads to a disorder of N-linked glycosylation. , 2008, American journal of human genetics.

[5]  N. Perrimon,et al.  Developmental cell biology: Heparan sulphate proteoglycans: the sweet side of development , 2005, Nature Reviews Molecular Cell Biology.

[6]  Y. Wada,et al.  Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation , 2015, Clinical genetics.

[7]  D. Kingsley,et al.  Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid- linked carbohydrate chains , 1986, The Journal of cell biology.

[8]  M. Krieger,et al.  A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. , 2007, Human molecular genetics.

[9]  Tsviya Olender,et al.  The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy , 2001, Nature Genetics.

[10]  Thierry Hennet,et al.  Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol‐linked oligosaccharides , 2009, Human mutation.

[11]  D. Sillence,et al.  Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. , 2006, American journal of human genetics.

[12]  T. Pozzan,et al.  The trans-Golgi compartment , 2010, Communicative & integrative biology.

[13]  Wanjin Hong,et al.  Identification of the first COG-CDG patient of Indian origin. , 2011, Molecular genetics and metabolism.

[14]  Approaches to homozygosity mapping and exome sequencing for the identification of novel types of CDG , 2012, Glycoconjugate Journal.

[15]  E. Thonar,et al.  Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene , 2000, Nature Genetics.

[16]  M. Mizuno,et al.  Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. , 2001, Developmental cell.

[17]  M. Krieger,et al.  The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. , 2004, Molecular biology of the cell.

[18]  G. Raymond,et al.  MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. , 2001, The Journal of clinical investigation.

[19]  R. Cummings,et al.  Protein glycosylation: Chaperone mutation in Tn syndrome , 2005, Nature.

[20]  N. Callewaert,et al.  Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Wevers,et al.  Intellectual disability and bleeding diathesis due to deficient CMP–sialic acid transport , 2013, Neurology.

[22]  Y. Wada,et al.  Multiple phenotypes in phosphoglucomutase 1 deficiency. , 2014, The New England journal of medicine.

[23]  M. Pawlita,et al.  UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. , 1999, Science.

[24]  G. Matthijs,et al.  Deficiency of Subunit 6 of the Conserved Oligomeric Golgi Complex (COG6-CDG): Second Patient, Different Phenotype. , 2012, JIMD Reports.

[25]  Lawrence A Tabak,et al.  Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. , 2012, Glycobiology.

[26]  Natalia Díez-Revuelta,et al.  Axon glycoprotein routing in nerve polarity, function, and repair. , 2015, Trends in biochemical sciences.

[27]  T. Hennet Diseases of glycosylation beyond classical congenital disorders of glycosylation. , 2012, Biochimica et biophysica acta.

[28]  N. Galeano,et al.  Secretory diarrhea with protein-losing enteropathy, enterocolitis cystica superficialis, intestinal lymphangiectasia, and congenital hepatic fibrosis: a new syndrome. , 1986, The Journal of pediatrics.

[29]  W. Annaert,et al.  Golgi function and dysfunction in the first COG4-deficient CDG type II patient , 2009, Human molecular genetics.

[30]  Peter Walter,et al.  Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein , 2002, Nature.

[31]  Matthias Baumgartner,et al.  Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. , 2009, Human molecular genetics.

[32]  D. Behar,et al.  Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis , 2004, Nature Genetics.

[33]  Amos Etzioni,et al.  Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency , 2001, Nature Genetics.

[34]  H. Freeze,et al.  TMEM165 deficiency causes a congenital disorder of glycosylation. , 2012, American journal of human genetics.

[35]  D. Rimoin,et al.  Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human , 2007, Nature Medicine.

[36]  F. Hao,et al.  Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized Dowling-Degos disease. , 2013, American journal of human genetics.

[37]  L. Missiaen,et al.  The Secretory Pathway Ca2+/Mn2+-ATPase 2 Is a Golgi-localized Pump with High Affinity for Ca2+ Ions* , 2005, Journal of Biological Chemistry.

[38]  R. Hennekam,et al.  Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. , 2006, American journal of human genetics.

[39]  Anthony P Corfield,et al.  Glycan variation and evolution in the eukaryotes. , 2015, Trends in biochemical sciences.

[40]  R. Cantor,et al.  Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse , 1998, Nature Genetics.

[41]  G. Matthijs,et al.  A new mutation in COG7 extends the spectrum of COG subunit deficiencies. , 2009, European journal of medical genetics.

[42]  K. Ley,et al.  Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. , 2011, Blood.

[43]  M. Bamshad,et al.  Solving glycosylation disorders: fundamental approaches reveal complicated pathways. , 2014, American journal of human genetics.

[44]  W. Annaert,et al.  Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. , 2008, Human molecular genetics.

[45]  Hans-Joachim Gabius,et al.  The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. , 2015, Trends in biochemical sciences.

[46]  G. Matthijs,et al.  COG5-CDG: expanding the clinical spectrum , 2012, Orphanet Journal of Rare Diseases.

[47]  H. Freeze,et al.  Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. , 1998, The Journal of clinical investigation.

[48]  G. Matthijs,et al.  COG5-CDG with a Mild Neurohepatic Presentation. , 2012, JIMD reports.

[49]  T. Strom,et al.  Polypeptide GalNAc-transferase T3 and Familial Tumoral Calcinosis , 2006, Journal of Biological Chemistry.

[50]  J. Jaeken,et al.  Endocrinology of the Carbohydrate-Deficient Glycoprotein Syndrome Type 1 from Birth through Adolescence , 1995, Pediatric Research.

[51]  B. Fernandez,et al.  Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. , 2009, Human molecular genetics.

[52]  S. Strahl,et al.  Protein O-mannosylation: what we have learned from baker's yeast. , 2013, Biochimica et biophysica acta.

[53]  Christelle Breton,et al.  Recent structures, evolution and mechanisms of glycosyltransferases. , 2012, Current opinion in structural biology.

[54]  G. Utermann,et al.  Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. , 2009, American journal of human genetics.

[55]  H. Freeze,et al.  A mutation in the human MPDU1 gene causes congenital disorder of glycosylation type If (CDG-If). , 2001, The Journal of clinical investigation.

[56]  G. Matthijs,et al.  Carbohydrate deficient glycoprotein (CDG) syndrome type I. , 1997, Journal of medical genetics.

[57]  Jeremy L. Praissman,et al.  Mammalian O-Mannosylation Pathway: Glycan Structures, Enzymes, and Protein Substrates , 2014, Biochemistry.

[58]  L. Kjellén,et al.  Sulfotransferases in glycosaminoglycan biosynthesis. , 2003, Current opinion in structural biology.

[59]  C. Schengrund,et al.  Gangliosides: glycosphingolipids essential for normal neural development and function. , 2015, Trends in biochemical sciences.

[60]  K. von Figura,et al.  Targeted Disruption of the Mouse Phosphomannomutase 2 Gene Causes Early Embryonic Lethality , 2006, Molecular and Cellular Biology.

[61]  R. Schönherr,et al.  COG complexes form spatial landmarks for distinct SNARE complexes , 2013, Nature Communications.

[62]  S. Mundlos,et al.  Further characterization of ATP6V0A2-related autosomal recessive cutis laxa , 2012, Human Genetics.

[63]  M. Lehrman,et al.  Expression Cloning of a Novel Suppressor of the Lec15 and Lec35 Glycosylation Mutations of Chinese Hamster Ovary Cells* , 1996, The Journal of Biological Chemistry.

[64]  M. Huynen,et al.  POMT2 mutations cause α-dystroglycan hypoglycosylation and Walker-Warburg syndrome , 2005, Journal of Medical Genetics.

[65]  Richard D. Smith,et al.  Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. , 2011, Glycobiology.

[66]  Gert Matthijs,et al.  CDG nomenclature: time for a change! , 2009, Biochimica et biophysica acta.

[67]  D. Babovic‐Vuksanovic,et al.  Laboratory Diagnosis of Congenital Disorders of Glycosylation Type I by Analysis of Transferrin Glycoforms , 2012, Molecular Diagnosis & Therapy.

[68]  Toshihiko Oka,et al.  Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function , 2002, The Journal of cell biology.

[69]  H. Freeze,et al.  COG8 deficiency causes new congenital disorder of glycosylation type IIh. , 2007, Human molecular genetics.

[70]  S. Mundlos,et al.  Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  F. Muntoni,et al.  Dystroglycanopathies: coming into focus. , 2011, Current opinion in genetics & development.

[72]  C. Thiel,et al.  Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. , 2010, Human molecular genetics.

[73]  G. Matthijs,et al.  Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells , 2013, Proceedings of the National Academy of Sciences.

[74]  O. Bohorov,et al.  Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder , 2004, Nature Medicine.

[75]  Gert Matthijs,et al.  Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2 , 2008, Nature Genetics.

[76]  K. Knobeloch,et al.  Sialylation is essential for early development in mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Gert Matthijs,et al.  Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of {beta}1,4-galactosyltransferase 1 and {alpha}2,6-sialyltransferase 1. , 2011, Glycobiology.

[78]  P. Stanley,et al.  Roles of glycosylation in Notch signaling. , 2010, Current topics in developmental biology.

[79]  C. Walsh,et al.  Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. , 2002, American journal of human genetics.

[80]  J. Gécz,et al.  Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. , 2008, American journal of human genetics.

[81]  A. Helenius,et al.  Carbohydrate-deficient glycoprotein syndromes become congenital disorders of glycosylation: An updated nomenclature for CDG , 1999, Glycoconjugate Journal.

[82]  K. Claeys,et al.  Muscle glycogenosis due to phosphoglucomutase 1 deficiency. , 2009, The New England journal of medicine.

[83]  R. Ledeen,et al.  The multi-tasked life of GM1 ganglioside, a true factotum of nature. , 2015, Trends in biochemical sciences.

[84]  S. Ikegawa,et al.  Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans* , 2013, The Journal of Biological Chemistry.