Synthesis and characterization of homo-dimetallic ferrocendiynyl-bridged bis(ethenylphthalocyaninato complexes)

[1]  Joseph Zyss,et al.  Synthesis and Nonlinear Optical, Photophysical, and Electrochemical Properties of Subphthalocyanines , 1998 .

[2]  M. Martínez‐Díaz,et al.  Novel Homo- and Heterodimetallic Heterobinuclear Phthalocyaninato-Triazolehemiporphyrazinate Complexes , 1998 .

[3]  A. Lever,et al.  Aggregation Effects on Electrochemical and Spectroelectrochemical Properties of [2,3,9,10,16,17,23,24-Octa(3,3-dimethyl-1-butynyl)phthalocyaninato]cobalt(II) Complex , 1998 .

[4]  T. Torres,et al.  Hemiporphyrazines as Targets for the Preparation of Molecular Materials: Synthesis and Physical Properties. , 1998, Chemical reviews.

[5]  J. Silver,et al.  Structure, Electrochemistry, and Properties of Bis(ferrocenecarboxylato)(phthalocyaninato)silicon(IV) and Its Implications for (Si(Pc)O)(n)() Polymer Chemistry. , 1998, Inorganic chemistry.

[6]  T. Torres,et al.  Synthesis and Characterization of Highly Conjugated Unsymmetrically Substituted Phthalocyanines , 1997 .

[7]  W. M. Campbell,et al.  The synthesis of dimeric porphyrins linked by a ferrocene , 1997 .

[8]  Paul A. Fleitz,et al.  Nonlinear Optics of Organic Molecules and Polymers , 1997 .

[9]  T. Torres,et al.  Stepwise Synthesis of Substituted Dicyanotriazolehemiporphyrazines. A Regioselective Approach to Unsymmetrically Substituted Hemiporphyrazines. , 1996, The Journal of organic chemistry.

[10]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[11]  Martina Huber,et al.  Model Reactions for Photosynthesis—Photoinduced Charge and Energy Transfer between Covalently Linked Porphyrin and Quinone Units , 1995 .

[12]  A. Lever,et al.  Synthesis, electrochemical and spectroelectrochemical studies of metal-free 2,9,16,23-tetraferrocenylphthalocyanine , 1994 .

[13]  M. Wasielewski Photoinduced electron transfer in supramolecular systems for artificial photosynthesis , 1992 .

[14]  A. Lever,et al.  Synthesis and Electrochemistry of Linear and Cofacial Conjugated Binuclear Phthalocyanines Covalently Linked by Alkyne and Alkene Bridges , 1991 .

[15]  G. Balavoine,et al.  An improved synthesis of ferrocene-1,1′-dicarbaldehyde , 1991 .

[16]  K. Kadish,et al.  Photoreactivity of .sigma.-bonded metalloporphyrins. 2. Germanium porphyrin complexes with .sigma.-bonded alkyl, aryl, or ferrocenyl groups. Intramolecular quenching of porphyrin excited triplet states by linked ferrocene , 1989 .

[17]  T. C. Bruice,et al.  Synthesis and characterization of a meso-tetrakis(4-ferrocenylphenyl)porphyrin and examination of its ability to undergo intramolecular photocatalyzed electron transfer , 1986 .

[18]  K. Tomer,et al.  Binuclear phthalocyanines covalently linked through two- and four-atom bridges , 1985 .

[19]  Kenneth B. Tomer,et al.  Metallophthalocyanine dimers incorporating five-atom covalent bridges , 1985 .

[20]  S. Dabak,et al.  SYNTHESIS OF PHTHALOCYANINES CROSSWISE-SUBSTITUTED WITH TWO ALKYLSULFANYL AND TWO AMINO GROUPS , 1997 .

[21]  T. Torres,et al.  Synthesis and Aggregation Properties in Solution of a New Octasubstituted Copper Phthalocyanine: {2,3,9,10,16,17,23,24‐Octakis‐[(dioctylaminocarbonyl)methoxy]phthalocyaninato}copper(II) , 1993 .

[22]  A. Lever,et al.  Phthalocyanines : properties and applications , 1989 .