Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters

[1]  Jie Zhao,et al.  Application of definitive screening design to quantify the effects of process parameters on key granule characteristics and optimize operating parameters in pulsed-spray fluid-bed granulation , 2019, Particuology.

[2]  Parisa A. Bahri,et al.  Life cycle analysis of milking of microalgae for renewable hydrocarbon production , 2019, Comput. Chem. Eng..

[3]  J. Tainter,et al.  Productivity of innovation in biofuel technologies , 2019, Energy Policy.

[4]  Thomas A. Adams,et al.  Techno-economic and environmental assessment of conceptually designed in situ lipid extraction process from microalgae , 2018, Algal Research.

[5]  R. Tyagi,et al.  The potential of microalgae in biodiesel production , 2018, Renewable and Sustainable Energy Reviews.

[6]  U. Azimov,et al.  Algae biofuel: Current status and future applications , 2018, Renewable and Sustainable Energy Reviews.

[7]  A. Ubando,et al.  Effects of salinity on the CO2 permeation across lipid bilayer for microalgae biofixation: a molecular dynamics study , 2018, Journal of Applied Phycology.

[8]  F. G. Üçtuğ,et al.  Life Cycle Assessment of Biodiesel Production from Microalgae: A Mass and Energy Balance Approach in Order to Compare Conventional with in Situ Transesterification , 2017 .

[9]  Muhammad Aminul Islam,et al.  Microalgae biodiesel: current status and future needs for engine performance and emissions , 2017 .

[10]  Jeongseok Park,et al.  Catalyst-free production of alkyl esters from microalgae via combined wet in situ transesterification and hydrothermal liquefaction (iTHL). , 2017, Bioresource technology.

[11]  Nattapong Tuntiwiwattanapun,et al.  The energy usage and environmental impact assessment of spent coffee grounds biodiesel production by an in-situ transesterification process , 2017 .

[12]  Man Kee Lam,et al.  Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing , 2017 .

[13]  I. Vieitez,et al.  Obtaining biodiesel from microalgae oil using ultrasound-assisted in-situ alkaline transesterification , 2017 .

[14]  Charles B. Felix,et al.  Uncatalyzed direct biodiesel production from wet microalgae under subcritical conditions , 2017, 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM).

[15]  Y. Chang,et al.  Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production , 2017, Bioprocess and Biosystems Engineering.

[16]  M. Karimi,et al.  Exergy-based optimization of direct conversion of microalgae biomass to biodiesel , 2017 .

[17]  R. Banerjee,et al.  Sustainable green solvents and techniques for lipid extraction from microalgae: A review , 2017 .

[18]  K. A. Salam,et al.  A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review , 2016 .

[19]  Yi-Hsu Ju,et al.  Developments in in-situ (trans) esterification for biodiesel production: A critical review , 2016 .

[20]  H. Masjuki,et al.  Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach , 2016 .

[21]  M. Feilizadeh,et al.  Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris. , 2016, Bioresource technology.

[22]  Jegannathan Kenthorai Raman,et al.  Life cycle assessment of algae biodiesel and its co-products , 2016 .

[23]  Yi-Hsu Ju,et al.  Transesterification of activated sludge in subcritical solvent mixture. , 2015, Bioresource technology.

[24]  Jason C. Quinn,et al.  Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways , 2015 .

[25]  J. M. Fernández-Sevilla,et al.  A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. , 2015, Bioresource technology.

[26]  J. M. Fernández-Sevilla,et al.  Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel , 2015 .

[27]  S. Deng,et al.  Single-step conversion of wet Nannochloropsis gaditana to biodiesel under subcritical methanol conditions , 2015 .

[28]  Young-Chul Lee,et al.  Advances in direct transesterification of algal oils from wet biomass. , 2015, Bioresource technology.

[29]  Joris Thybaut,et al.  Optimization of soft templated mesoporous carbon synthesis using Definitive Screening Design , 2015 .

[30]  M. Koller,et al.  Microalgae as versatile cellular factories for valued products , 2014 .

[31]  Yi-Hsu Ju,et al.  Synthesis of biodiesel from vegetable oils wastewater sludge by in-situ subcritical methanol transesterification: Process evaluation and optimization , 2014 .

[32]  V. Gude,et al.  Microwave and ultrasound enhanced extractive-transesterification of algal lipids , 2014 .

[33]  A. Go,et al.  In situ transesterification of Jatropha curcas L. seeds in subcritical solvent system , 2014 .

[34]  Marie-Odile P. Fortier,et al.  Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae , 2014 .

[35]  A. Go,et al.  Catalyst free esterification of fatty acids with methanol under subcritical condition , 2014 .

[36]  Saddam H. Al-lwayzy,et al.  Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines , 2014 .

[37]  A. Go,et al.  Biodiesel production under subcritical solvent condition using subcritical water treated whole Jatropha curcas seed kernels and possible use of hydrolysates to grow Yarrowia lipolytica , 2014 .

[38]  Tapaswy Muppaneni,et al.  Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions , 2014 .

[39]  Hansol Lee,et al.  Concurrent extraction and reaction for the production of biodiesel from wet microalgae. , 2014, Bioresource technology.

[40]  A. Go,et al.  A study on the mechanism of subcritical water treatment to maximize extractable cellular lipids , 2013 .

[41]  Amin U. Khan,et al.  Transesterification of oil extracted from different species of algae for biodiesel production , 2013 .

[42]  Yi-Hsu Ju,et al.  Synthesis of biodiesel in subcritical water and methanol , 2013 .

[43]  I. M. Atadashi,et al.  The effects of catalysts in biodiesel production: A review , 2013 .

[44]  Sebastian Verhelst,et al.  Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression , 2013 .

[45]  Yi-Hsu Ju,et al.  In situ biodiesel production from wet Chlorella vulgaris under subcritical condition , 2012 .

[46]  Y. Ju,et al.  Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition. , 2012, Bioresource technology.

[47]  J. Rodríguez-Rodríguez,et al.  Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition , 2012 .

[48]  Peter J. Lammers,et al.  Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions , 2011 .

[49]  Ayhan Demirbas,et al.  Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems , 2011 .

[50]  Changwei Hu,et al.  One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst , 2011 .

[51]  Helena M. Amaro,et al.  Advances and perspectives in using microalgae to produce biodiesel , 2011 .

[52]  Shengjun Luo,et al.  Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2 , 2011 .

[53]  S. Olsen,et al.  A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels , 2011 .

[54]  M. P. Dorado,et al.  Multiple response optimization of vegetable oils fatty acid composition to improve biodiesel physical properties. , 2011, Bioresource technology.

[55]  Christopher J. Nachtsheim,et al.  A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects , 2011 .

[56]  Gerhard Knothe,et al.  “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties† , 2008 .