Photocrosslinking-induced CRAC channel-like Orai1 activation independent of STIM1

[1]  M. Prakriya,et al.  A human tubular aggregate myopathy mutation unmasks STIM1-independent rapid inactivation of Orai1 channels , 2022, bioRxiv.

[2]  E. Zomot,et al.  Photopharmacological modulation of native CRAC channels using azoboronate photoswitches , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Hediger,et al.  Orai1 Boosts SK3 Channel Activation , 2021, Cancers.

[4]  M. Fahrner,et al.  Transmembrane Domain 3 (TM3) Governs Orai1 and Orai3 Pore Opening in an Isoform-Specific Manner , 2021, Frontiers in Cell and Developmental Biology.

[5]  Lin Sun,et al.  Engineering of a bona fide light-operated calcium channel , 2021, Nature Communications.

[6]  I. Derler,et al.  The Orai Pore Opening Mechanism , 2021, International journal of molecular sciences.

[7]  C. Romanin,et al.  STIM Proteins: An Ever-Expanding Family , 2020, International journal of molecular sciences.

[8]  C. Romanin,et al.  CRAC channel opening is determined by a series of Orai1 gating checkpoints in the transmembrane and cytosolic regions , 2020, The Journal of biological chemistry.

[9]  C. Romanin,et al.  Mechanism of STIM activation. , 2020, Current opinion in physiology.

[10]  R. Serfling,et al.  Exploring GPCR‐arrestin interfaces with genetically encoded crosslinkers , 2020, EMBO reports.

[11]  S. Long,et al.  Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation , 2020, bioRxiv.

[12]  Ivana Nikić-Spiegel Expanding the Genetic Code for Neuronal Studies , 2020, Chembiochem : a European journal of chemical biology.

[13]  Minyong Li,et al.  Optical control of CRAC channels using photoswitchable azopy-razoles. , 2020, Journal of the American Chemical Society.

[14]  W. Han,et al.  Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling , 2020, Nature Communications.

[15]  D. Peckys,et al.  Detecting single ORAI1 proteins within the plasma membrane reveals higher-order channel complexes , 2019, Journal of Cell Science.

[16]  M. Klein,et al.  Toward a Model for Activation of Orai Channel , 2019, iScience.

[17]  Thomas L. Williams,et al.  Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells , 2019, Essays in biochemistry.

[18]  J. Putney,et al.  A calcium/cAMP signaling loop at the ORAI1 mouth drives channel inactivation to shape NFAT induction , 2019, Nature Communications.

[19]  Xiaofen Liu,et al.  Molecular understanding of calcium permeation through the open Orai channel , 2019, PLoS biology.

[20]  M. Hediger,et al.  ORAI1 channel gating and selectivity is differentially altered by natural mutations in the first or third transmembrane domain , 2018, The Journal of physiology.

[21]  A. Plested,et al.  Gating modules of the AMPA receptor pore domain revealed by unnatural amino acid mutagenesis , 2018, Proceedings of the National Academy of Sciences.

[22]  Kathrin Lang,et al.  Expanding the Genetic Code to Study Protein-Protein Interactions. , 2018, Angewandte Chemie.

[23]  Alexander Deiters,et al.  Recent advances in the optical control of protein function through genetic code expansion. , 2018, Current opinion in chemical biology.

[24]  I. Coin,et al.  Application of non-canonical crosslinking amino acids to study protein-protein interactions in live cells. , 2018, Current opinion in chemical biology.

[25]  Laetitia Mony,et al.  Probing Ion Channel Structure and Function Using Light-Sensitive Amino Acids. , 2018, Trends in biochemical sciences.

[26]  R. Pomès,et al.  Mapping the functional anatomy of Orai1 transmembrane domains for CRAC channel gating , 2018, Proceedings of the National Academy of Sciences.

[27]  B. Niemeyer,et al.  Cross-linking of Orai1 channels by STIM proteins , 2018, Proceedings of the National Academy of Sciences.

[28]  S. Long,et al.  Structures reveal opening of the store-operated calcium channel Orai , 2018, bioRxiv.

[29]  C. Romanin,et al.  Authentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus , 2017, The Journal of Biological Chemistry.

[30]  C. Romanin,et al.  Communication between N terminus and loop2 tunes Orai activation , 2017, The Journal of Biological Chemistry.

[31]  Yuting Chen,et al.  
Genetic Code Expansion and Optoproteomics , 2017, The Yale journal of biology and medicine.

[32]  Laura Tociu,et al.  Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription , 2017, Science Signaling.

[33]  V. Katritch,et al.  Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones in live human cells , 2017, eLife.

[34]  P. Paoletti,et al.  Optocontrol of glutamate receptor activity by single side-chain photoisomerization , 2017, eLife.

[35]  W. Newman,et al.  ORAI1 Mutations with Distinct Channel Gating Defects in Tubular Aggregate Myopathy , 2017, Human mutation.

[36]  R. Pomès,et al.  STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate , 2017, Nature Communications.

[37]  M. Trebak,et al.  The STIM1-binding site nexus remotely controls Orai1 channel gating , 2016, Nature Communications.

[38]  Richard S Lewis,et al.  Functional Analysis of Orai1 Concatemers Supports a Hexameric Stoichiometry for the CRAC Channel. , 2016, Biophysical journal.

[39]  Shixin Ye,et al.  Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers , 2016, Scientific Reports.

[40]  Richard S Lewis,et al.  The inactivation domain of STIM1 is functionally coupled with the Orai1 pore to enable Ca2+-dependent inactivation , 2016, The Journal of general physiology.

[41]  Richard S Lewis,et al.  Orai1 pore residues control CRAC channel inactivation independently of calmodulin , 2016, The Journal of general physiology.

[42]  Yun Huang,et al.  Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation , 2015, eLife.

[43]  Richard S Lewis,et al.  Store-Operated Calcium Channels. , 2015, Physiological reviews.

[44]  Cheol‐Hee Kim,et al.  Optogenetic control of endogenous Ca2+ channels in vivo , 2015, Nature Biotechnology.

[45]  E. Isacoff,et al.  Critical role for Orai1 C-terminal domain and TM4 in CRAC channel gating , 2015, Cell Research.

[46]  I. Nonaka,et al.  Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca²⁺ channels. , 2015, Human molecular genetics.

[47]  Robert E. Campbell,et al.  Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum , 2014, The Biochemical journal.

[48]  A. Plested,et al.  Photoinactivation of Glutamate Receptors by Genetically Encoded Unnatural Amino Acids , 2014, The Journal of Neuroscience.

[49]  D. O'Leary,et al.  In Vivo Expression of a Light-Activatable Potassium Channel Using Unnatural Amino Acids , 2013, Neuron.

[50]  C. Romanin,et al.  The Extended Transmembrane Orai1 N-terminal (ETON) Region Combines Binding Interface and Gate for Orai1 Activation by STIM1*♦ , 2013, The Journal of Biological Chemistry.

[51]  Joseph P. Yuan,et al.  The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function , 2013, The Journal of cell biology.

[52]  Takeharu Nagai,et al.  Improved orange and red Ca²± indicators and photophysical considerations for optogenetic applications. , 2013, ACS chemical neuroscience.

[53]  M. Prakriya,et al.  The C‐ and N‐terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels , 2013, The Journal of physiology.

[54]  S. Long,et al.  Crystal Structure of the Calcium Release–Activated Calcium Channel Orai , 2012, Science.

[55]  M. Prakriya,et al.  Permeation, selectivity and gating in store‐operated CRAC channels , 2012, The Journal of physiology.

[56]  E. Reuveny,et al.  SARAF Inactivates the Store Operated Calcium Entry Machinery to Prevent Excess Calcium Refilling , 2012, Cell.

[57]  M. Prakriya,et al.  Gated regulation of CRAC channel ion selectivity by STIM1 , 2011, Nature.

[58]  C. Romanin,et al.  Molecular Determinants within N Terminus of Orai3 Protein That Control Channel Activation and Gating , 2011, The Journal of Biological Chemistry.

[59]  C. Romanin,et al.  Cooperativeness of Orai Cytosolic Domains Tunes Subtype-specific Gating , 2011, The Journal of Biological Chemistry.

[60]  R. Penner,et al.  A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating , 2010, The Journal of general physiology.

[61]  Y. Gwack,et al.  The Intracellular Loop of Orai1 Plays a Central Role in Fast Inactivation of Ca2+ Release-activated Ca2+ Channels* , 2009, The Journal of Biological Chemistry.

[62]  M. Prakriya The molecular physiology of CRAC channels , 2009, Immunological reviews.

[63]  P. Worley,et al.  Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels , 2009, Proceedings of the National Academy of Sciences.

[64]  C. Romanin,et al.  A Ca2+ Release-activated Ca2+ (CRAC) Modulatory Domain (CMD) within STIM1 Mediates Fast Ca2+-dependent Inactivation of ORAI1 Channels*♦ , 2009, The Journal of Biological Chemistry.

[65]  H. Kahr,et al.  Dynamic Coupling of the Putative Coiled-coil Domain of ORAI1 with STIM1 Mediates ORAI1 Channel Activation* , 2008, Journal of Biological Chemistry.

[66]  Tobias Meyer,et al.  Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion , 2007, Proceedings of the National Academy of Sciences.

[67]  H. Kahr,et al.  Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+‐dependent inactivation , 2006, The Journal of physiology.

[68]  J. Billingsley,et al.  CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel , 2006, Current Biology.

[69]  Richard S Lewis,et al.  Regulation of CRAC Channel Activity by Recruitment of Silent Channels to a High Open-probability Gating Mode , 2006, The Journal of general physiology.

[70]  Bogdan Tanasa,et al.  A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function , 2006, Nature.

[71]  T. Deerinck,et al.  STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane , 2005, Nature.

[72]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[73]  T. Zal,et al.  Photobleaching-corrected FRET efficiency imaging of live cells. , 2004, Biophysical journal.

[74]  Richard S Lewis,et al.  CRAC channels: activation, permeation, and the search for a molecular identity. , 2003, Cell calcium.

[75]  Richard S Lewis,et al.  Separation and Characterization of Currents through Store-operated CRAC Channels and Mg2+-inhibited Cation (MIC) Channels , 2002, The Journal of general physiology.

[76]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[77]  A. Plested,et al.  Crosslinking glutamate receptor ion channels. , 2021, Methods in enzymology.

[78]  I. Derler,et al.  Review: Structure and Activation Mechanisms of CRAC Channels. , 2020, Advances in experimental medicine and biology.