Reversible Implementation of a Discrete Integer Linear Transformation
暂无分享,去创建一个
[1] G.. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .
[2] Fons A. M. L. Bruekers,et al. New Networks for Perfect Inversion and Perfect Reconstruction , 1992, IEEE J. Sel. Areas Commun..
[3] I. Daubechies,et al. Factoring wavelet transforms into lifting steps , 1998 .
[4] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[6] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[7] Barenco,et al. Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[8] I. Daubechies,et al. Wavelet Transforms That Map Integers to Integers , 1998 .
[9] Holger Bock Axelsen,et al. Parallelization of Reversible Ripple-Carry Adders , 2009, Parallel Process. Lett..
[10] Henrique S. Malvar,et al. Low-complexity transform and quantization in H.264/AVC , 2003, IEEE Trans. Circuits Syst. Video Technol..
[11] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[12] Alexis De Vos,et al. Decomposition of a Linear Reversible Computer: Digital Versus Analog , 2010, Int. J. Unconv. Comput..
[13] Thomas G. Draper,et al. A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.
[14] Alexis De Vos,et al. Reversible Computer Hardware , 2010, RC@ETAPS.
[15] I. Daubechies,et al. Factoring wavelet transforms into lifting steps , 1998 .
[16] M. Skoneczny,et al. Reversible fourier transform chip , 2008, 2008 15th International Conference on Mixed Design of Integrated Circuits and Systems.
[17] Robert Glück,et al. Reversible Machine Code and Its Abstract Processor Architecture , 2007, CSR.
[18] W. Sweldens. The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .