Reversible Implementation of a Discrete Integer Linear Transformation

Discrete linear transformations form important steps in processing information. Many such transformations are injective and therefore are prime candidates for a physically reversible implementation into hardware. We present here the first steps towards a reversible digital implementation of two different integer transformations on four inputs: The Haar wavelet and the H.264 transform.

[1]  G. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .

[2]  Fons A. M. L. Bruekers,et al.  New Networks for Perfect Inversion and Perfect Reconstruction , 1992, IEEE J. Sel. Areas Commun..

[3]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[4]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[6]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[7]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  I. Daubechies,et al.  Wavelet Transforms That Map Integers to Integers , 1998 .

[9]  Holger Bock Axelsen,et al.  Parallelization of Reversible Ripple-Carry Adders , 2009, Parallel Process. Lett..

[10]  Henrique S. Malvar,et al.  Low-complexity transform and quantization in H.264/AVC , 2003, IEEE Trans. Circuits Syst. Video Technol..

[11]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[12]  Alexis De Vos,et al.  Decomposition of a Linear Reversible Computer: Digital Versus Analog , 2010, Int. J. Unconv. Comput..

[13]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[14]  Alexis De Vos,et al.  Reversible Computer Hardware , 2010, RC@ETAPS.

[15]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[16]  M. Skoneczny,et al.  Reversible fourier transform chip , 2008, 2008 15th International Conference on Mixed Design of Integrated Circuits and Systems.

[17]  Robert Glück,et al.  Reversible Machine Code and Its Abstract Processor Architecture , 2007, CSR.

[18]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .