Input/output hierarchical clustering in process networks based on relative degrees

In this paper, a divisive hierarchical clustering method is proposed to address the problem of pairing of manipulated inputs and controlled outputs. Specifically, an integer nonlinear optimization problem is formulated to identify groups of inputs and outputs with strong structural coupling quantified by relative degrees. This optimization problem can be solved in a hierarchical manner to generate a hierarchy of block decentralized control configurations. The application of the method is illustrated through a case study on an example chemical process network.

[1]  William L. Luyben,et al.  Plantwide control design procedure , 1997 .

[2]  George Stephanopoulos,et al.  Synthesis of control systems for chemical plants , 1996 .

[3]  Gade Pandu Rangaiah,et al.  Plantwide control : recent developments and applications , 2012 .

[4]  J. Fraser Forbes,et al.  Block Relative Gain: Properties and Pairing Rules , 2003 .

[5]  Vasilios Manousiouthakis,et al.  Synthesis of decentralized process control structures using the concept of block relative gain , 1986 .

[6]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[7]  Jie Bao,et al.  Distributed model predictive control based on dissipativity , 2013 .

[8]  Panagiotis D. Christofides,et al.  Distributed model predictive control of nonlinear process systems , 2009 .

[9]  Michael Baldea,et al.  Dynamics and Control of Process Networks with Large Energy Recycle , 2009 .

[10]  Sigurd Skogestad Plantwide control: the search for the self-optimizing control structure , 2000 .

[11]  Nael H. El-Farra,et al.  Quasi-decentralized model-based networked control of process systems , 2008, Comput. Chem. Eng..

[12]  Riccardo Scattolini,et al.  Architectures for distributed and hierarchical Model Predictive Control - A review , 2009 .

[13]  Prodromos Daoutidis,et al.  Structural evaluation of control configurations for multivariable nonlinear processes , 1992 .

[14]  Panagiotis D. Christofides,et al.  Fault‐tolerant control of nonlinear process systems subject to sensor faults , 2007 .

[15]  James B. Rawlings,et al.  Coordinating multiple optimization-based controllers: New opportunities and challenges , 2008 .

[16]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Georgakis,et al.  Plantwide regulatory control design procedure using a tiered framework , 1993 .

[18]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[19]  Jie Bao,et al.  Dissipativity-based decentralized control of interconnected nonlinear chemical processes , 2012, Comput. Chem. Eng..

[20]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[21]  Costas Kravaris,et al.  Plant-wide control structure selection methodology based on economics , 2013, Comput. Chem. Eng..

[22]  B. Erik Ydstie,et al.  Passivity based control via the second law , 2002 .

[23]  Prodromos Daoutidis,et al.  Design and control of energy integrated SOFC systems for in situ hydrogen production and power generation , 2011, Comput. Chem. Eng..

[24]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .