ABC-X: a generalized, automatically configurable artificial bee colony framework

The artificial bee colony (ABC) algorithm is a popular metaheuristic that was originally conceived for tackling continuous function optimization tasks. Over the last decade, a large number of variants of ABC have been proposed, making it by now a well-studied swarm intelligence algorithm. Typically, in a paper on algorithmic variants of ABC algorithms, one or at most two of its algorithmic components are modified. Possible changes include variations on the search equations, the selection of candidate solutions to be explored, or the adoption of features from other algorithmic techniques. In this article, we propose to follow a different direction and to build a generalized ABC algorithm, which we call ABC-X. ABC-X collects algorithmic components available from known ABC algorithms into a common algorithm framework that allows not only to instantiate known ABC variants but, more importantly, also many ABC algorithm variants that have never been explored before in the literature. Automatic algorithm configuration techniques can generate from this template new ABC variants that perform better than known ABC algorithms, even when their numerical parameters are fine-tuned using the same automatic configuration process.

[1]  Bernd Bischl,et al.  Exploratory landscape analysis , 2011, GECCO '11.

[2]  Xu Wei-bin A Modified Artificial Bee Colony Algorithm , 2011 .

[3]  Junjie Li,et al.  Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions , 2011, Inf. Sci..

[4]  Junjie Li,et al.  Artificial Bee Colony Algorithm with Local Search for Numerical Optimization , 2011, J. Softw..

[5]  Mohammed El-Abd,et al.  Opposition-based artificial bee colony algorithm , 2011, GECCO '11.

[6]  Thomas Stützle,et al.  Incremental Social Learning in Particle Swarms , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[8]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[9]  Thomas Stützle,et al.  A configurable generalized artificial bee colony algorithm with local search strategies , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[10]  Xianneng Li,et al.  Artificial bee colony algorithm with memory , 2016, Appl. Soft Comput..

[11]  Serdar Özyön,et al.  Solution to non-convex economic dispatch problem with valve point effects by incremental artificial bee colony with local search , 2013, Appl. Soft Comput..

[12]  L Manuel,et al.  The Automatic Design of Multi-Objective Ant Colony Optimization Algorithms , 2012 .

[13]  Thomas Stützle,et al.  Artificial bee colonies for continuous optimization: Experimental analysis and improvements , 2013, Swarm Intelligence.

[14]  Thomas Stützle,et al.  Automatic (offline) configuration of algorithms , 2014, GECCO.

[15]  Wu Bin,et al.  Differential Artificial Bee Colony Algorithm for Global Numerical Optimization , 2011, J. Comput..

[16]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[17]  Wan-li Xiang,et al.  An efficient and robust artificial bee colony algorithm for numerical optimization , 2013, Comput. Oper. Res..

[18]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[19]  Alkin Yurtkuran,et al.  An adaptive artificial bee colony algorithm for global optimization , 2015, Appl. Math. Comput..

[20]  Thomas Stützle,et al.  Improving Performance via Population Growth and Local Search: The Case of the Artificial Bee Colony Algorithm , 2011, Artificial Evolution.

[21]  Francisco Herrera,et al.  Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems , 2011, Soft Comput..

[22]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[23]  Thomas St A Configurable Generalized Artificial Bee Colony Algorithm with Local Search Strategies , 2015 .

[24]  Lingling Huang,et al.  A global best artificial bee colony algorithm for global optimization , 2012, J. Comput. Appl. Math..

[25]  Thomas Stützle,et al.  A unified ant colony optimization algorithm for continuous optimization , 2014, Eur. J. Oper. Res..

[26]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[27]  Dogan Aydin,et al.  Composite artificial bee colony algorithms: From component-based analysis to high-performing algorithms , 2015, Appl. Soft Comput..

[28]  Mohd Ismail Abd Aziz,et al.  Enhanced compact artificial bee colony , 2015, Inf. Sci..

[29]  Holger H. Hoos,et al.  Programming by optimization , 2012, Commun. ACM.

[30]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[31]  Tarun Kumar Sharma,et al.  Enhancing the food locations in an Artificial Bee Colony algorithm , 2011, SWIS.

[32]  Tianjun Liao,et al.  Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem , 2014 .

[33]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[34]  Thomas Stützle,et al.  Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms , 2016, IEEE Transactions on Evolutionary Computation.

[35]  Ashiqur R. KhudaBukhsh,et al.  SATenstein: automatically building local search SAT solvers from components , 2009, IJCAI 2009.

[36]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[37]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[38]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[39]  Sanyang Liu,et al.  Improved artificial bee colony algorithm for global optimization , 2011 .

[40]  Martin Middendorf,et al.  Performance evaluation of artificial bee colony optimization and new selection schemes , 2011, Memetic Comput..

[41]  Ponnuthurai Nagaratnam Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization , 2014 .

[42]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[43]  Thomas Stützle,et al.  An incremental ant colony algorithm with local search for continuous optimization , 2011, GECCO '11.

[44]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[45]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[46]  Lingling Huang,et al.  Artificial bee colony algorithm with multiple search strategies , 2015, Appl. Math. Comput..

[47]  Lingling Huang,et al.  Enhancing artificial bee colony algorithm using more information-based search equations , 2014, Inf. Sci..

[48]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[49]  Peng Lu,et al.  Chaotic differential bee colony optimization algorithm for dynamic economic dispatch problem with valve-point effects , 2014 .

[50]  Parham Moradi,et al.  Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems , 2014, Eng. Appl. Artif. Intell..

[51]  Thomas Stützle,et al.  Continuous optimization algorithms for tuning real and integer parameters of swarm intelligence algorithms , 2011, Swarm Intelligence.

[52]  Wei-jie Yu,et al.  Artificial bee colony algorithm with an adaptive greedy position update strategy , 2018, Soft Comput..

[53]  T. Stützle,et al.  Automatic Component-wise Design of Multi-Objective Evolutionary Algorithms , 2014 .

[54]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[55]  Mark Hoogendoorn,et al.  Parameter Control in Evolutionary Algorithms: Trends and Challenges , 2015, IEEE Transactions on Evolutionary Computation.

[56]  Tiranee Achalakul,et al.  The best-so-far selection in Artificial Bee Colony algorithm , 2011, Appl. Soft Comput..

[57]  Thomas Stützle,et al.  F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[58]  Chun Chen,et al.  Multiple trajectory search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[59]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[60]  Shoufeng Ma,et al.  hABCDE: A hybrid evolutionary algorithm based on artificial bee colony algorithm and differential evolution , 2014, Appl. Math. Comput..

[61]  Pier Luca Lanzi,et al.  Proceedings of the 13th annual conference on Genetic and evolutionary computation , 2011, GECCO 2011.

[62]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..