Logical representation of preference: a brief survey

Specifying an individual or collective decision making problem requires agents’ preferences over the possible alternatives to be expressed. There exist various models for preference modelling; however, whatever model is chosen does not tell how the transition from the preferences, as they are expressed by the agent, to the preferential structure, is done. Logic plays an important role in designing preference representation languages, which are aimed at expressing preferences over very large, combinatorial sets of alternatives in a compact and structured way. This paper gives a brief survey on these languages.

[1]  Tuomas Sandholm,et al.  An algorithm for optimal winner determination in combinatorial auctions , 1999, IJCAI 1999.

[2]  Hirofumi Katsuno,et al.  On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.

[3]  Andreas Herzig,et al.  Conditionals: from philosophy to computer science , 1996 .

[4]  Didier Dubois,et al.  Possibilistic logic representation of preferences: relating prioritized goals and satisfaction levels expressions , 2002, ECAI.

[5]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[6]  Laurence Cholvy,et al.  An Attempt to Adapt a Logic of Conditional Preferences for Reasoning with Contrary-To-Duties , 2001, Fundam. Informaticae.

[7]  Thomas Schiex,et al.  Penalty Logic and its Link with Dempster-Shafer Theory , 1994, UAI.

[8]  Jérôme Lang,et al.  Possibilistic logic as a logical framework for min-max discrete optimisation problems and prioritized constraints , 1991, FAIR.

[9]  Jérôme Lang,et al.  Logical Preference Representation and Combinatorial Vote , 2004, Annals of Mathematics and Artificial Intelligence.

[10]  Craig Boutilier,et al.  Bidding Languages for Combinatorial Auctions , 2001, IJCAI.

[11]  Jérôme Lang,et al.  From Preference Representation to Combinatorial Vote , 2002, KR.

[12]  Judea Pearl,et al.  Specification and Evaluation of Preferences for Planning under Uncertainty , 1994 .

[13]  Sven Ove Hansson,et al.  The Structure of Values and Norms , 2007, Cambridge Studies in Probability, Induction and Decision Theory.

[14]  N. Rescher The Logic of Preference , 1968 .

[15]  Craig Boutilier,et al.  Toward a Logic for Qualitative Decision Theory , 1994, KR.

[16]  Didier Dubois,et al.  Inconsistency in possibilistic knowledge bases: to live with it or not live with it , 1992 .

[17]  Noam Nisan,et al.  Bidding and allocation in combinatorial auctions , 2000, EC '00.

[18]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[19]  Didier Dubois,et al.  Bipolar Representation and Fusion of Preferences on the Possibilistic Logic framework , 2002, KR.

[20]  Daniel Lehmann,et al.  Another perspective on default reasoning , 1995, Annals of Mathematics and Artificial Intelligence.

[21]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[22]  Didier Dubois,et al.  Ordinal and Probabilistic Representations of Acceptance , 2004, J. Artif. Intell. Res..

[23]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[24]  Patrice Perny,et al.  The use of fuzzy preference models in multiple criteria choice, ranking and sorting , 1999 .

[25]  Didier Dubois,et al.  Bipolar Possibilistic Representations , 2002, UAI.

[26]  H. Prade,et al.  Possibilistic logic , 1994 .

[27]  Ronen I. Brafman,et al.  CP-nets: Reasoning and Consistency Testing , 2002, KR.

[28]  Jérôme Lang,et al.  Expressive Power and Succinctness of Propositional Languages for Preference Representation , 2004, KR.

[29]  Gadi Pinkas,et al.  Propositional Non-Monotonic Reasoning and Inconsistency in Symmetric Neural Networks , 1991, IJCAI.

[30]  Fahiem Bacchus,et al.  Graphical models for preference and utility , 1995, UAI.

[31]  Patrice Perny,et al.  GAI Networks for Utility Elicitation , 2004, KR.

[32]  Ronen I. Brafman,et al.  Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.

[33]  Jon Doyle,et al.  Preferential Semantics for Goals , 1991, AAAI.

[34]  Alexis Tsoukiàs,et al.  A survey on non conventional preference modeling , 1992 .

[35]  Leon van der Torre,et al.  Utilitarian Desires , 2002, Autonomous Agents and Multi-Agent Systems.

[36]  Régis Sabbadin Decision As Abduction? , 1998, ECAI.

[37]  Alexis Tsoukiàs,et al.  A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics , 2002 .

[38]  Peter Haddawy,et al.  Representations for Decision-Theoretic Planning: Utility Functions for Deadline Goals , 1992, KR.

[39]  Didier Dubois,et al.  Towards a Possibilistic Logic Handling of Preferences , 1999, Applied Intelligence.

[40]  Sébastien Konieczny,et al.  Distance Based Merging: A General Framework and some Complexity Results , 2002, KR.

[41]  Jérôme Lang,et al.  Propositional Distances and Preference Representation , 2001, ECSQARU.

[42]  Sven Ove Hansson What is ceteris paribus preference? , 1996, J. Philos. Log..

[43]  Jérôme Lang,et al.  Logical representation of preferences for group decision making , 2000, KR.

[44]  Alessandro Saffiotti,et al.  A General Approach for Inconsistency Handling and Merging Information in Prioritized Knowledge Bases , 1998, KR.

[45]  Sébastien Konieczny,et al.  On the Logic of Merging , 1998, KR.

[46]  Peter Z. Revesz,et al.  On the Semantics of Arbitration , 1997, Int. J. Algebra Comput..

[47]  Hector Geffner,et al.  Default reasoning - causal and conditional theories , 1992 .

[48]  Leon van der Torre,et al.  Parameters for Utilitarian Desires in a Qualitative Decision Theory , 2001, Applied Intelligence.

[49]  Nic Wilson,et al.  Extending CP-Nets with Stronger Conditional Preference Statements , 2004, AAAI.

[50]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[51]  Judea Pearl,et al.  System Z: a Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning^ , 1990 .

[52]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[53]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[54]  Yann Chevaleyre,et al.  Welfare Engineering in Practice: On the Variety of Multiagent Resource Allocation Problems , 2004, ESAW.

[55]  Ronen I. Brafman,et al.  Reasoning with conditional ceteris paribus statements , 1999, UAI 1999.

[56]  David Makinson,et al.  Five faces of minimality , 1993, Stud Logica.

[57]  Judea Pearl,et al.  Specification and Evaluation of Preferences Under Uncertainty , 1994, KR.

[58]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[59]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[60]  Didier Dubois,et al.  Possibilistic Logic in Decision , 1999 .

[61]  Gerhard Brewka,et al.  Logic programming with ordered disjunction , 2002, NMR.

[62]  Bernhard Nebel,et al.  Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.

[63]  Jon Doyle,et al.  Efficient utility functions for ceteris paribus preferences , 2002, AAAI/IAAI.

[64]  Jérôme Lang,et al.  Conditional Desires and Utilities: an Alternative Logical Approach to Qualitative Decision Theory , 1996, ECAI.

[65]  Joseph Y. Halpern Defining Relative Likelihood in Partially-Ordered Structures , 1997, J. Artif. Intell. Res..

[66]  Matthew L. Ginsberg,et al.  Supermodels and Robustness , 1998, AAAI/IAAI.

[67]  Jon Doyle,et al.  A Logic of Relative Desire (Preliminary Report) , 1991, ISMIS.

[68]  C. Cayrol Un modèle logique général pour le raisonnement révisable , 1992 .