Logical representation of preference: a brief survey
暂无分享,去创建一个
[1] Tuomas Sandholm,et al. An algorithm for optimal winner determination in combinatorial auctions , 1999, IJCAI 1999.
[2] Hirofumi Katsuno,et al. On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.
[3] Andreas Herzig,et al. Conditionals: from philosophy to computer science , 1996 .
[4] Didier Dubois,et al. Possibilistic logic representation of preferences: relating prioritized goals and satisfaction levels expressions , 2002, ECAI.
[5] Dov M. Gabbay,et al. Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .
[6] Laurence Cholvy,et al. An Attempt to Adapt a Logic of Conditional Preferences for Reasoning with Contrary-To-Duties , 2001, Fundam. Informaticae.
[7] Thomas Schiex,et al. Penalty Logic and its Link with Dempster-Shafer Theory , 1994, UAI.
[8] Jérôme Lang,et al. Possibilistic logic as a logical framework for min-max discrete optimisation problems and prioritized constraints , 1991, FAIR.
[9] Jérôme Lang,et al. Logical Preference Representation and Combinatorial Vote , 2004, Annals of Mathematics and Artificial Intelligence.
[10] Craig Boutilier,et al. Bidding Languages for Combinatorial Auctions , 2001, IJCAI.
[11] Jérôme Lang,et al. From Preference Representation to Combinatorial Vote , 2002, KR.
[12] Judea Pearl,et al. Specification and Evaluation of Preferences for Planning under Uncertainty , 1994 .
[13] Sven Ove Hansson,et al. The Structure of Values and Norms , 2007, Cambridge Studies in Probability, Induction and Decision Theory.
[14] N. Rescher. The Logic of Preference , 1968 .
[15] Craig Boutilier,et al. Toward a Logic for Qualitative Decision Theory , 1994, KR.
[16] Didier Dubois,et al. Inconsistency in possibilistic knowledge bases: to live with it or not live with it , 1992 .
[17] Noam Nisan,et al. Bidding and allocation in combinatorial auctions , 2000, EC '00.
[18] Yoav Shoham,et al. Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.
[19] Didier Dubois,et al. Bipolar Representation and Fusion of Preferences on the Possibilistic Logic framework , 2002, KR.
[20] Daniel Lehmann,et al. Another perspective on default reasoning , 1995, Annals of Mathematics and Artificial Intelligence.
[21] Hirofumi Katsuno,et al. Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..
[22] Didier Dubois,et al. Ordinal and Probabilistic Representations of Acceptance , 2004, J. Artif. Intell. Res..
[23] Thomas Schiex,et al. Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.
[24] Patrice Perny,et al. The use of fuzzy preference models in multiple criteria choice, ranking and sorting , 1999 .
[25] Didier Dubois,et al. Bipolar Possibilistic Representations , 2002, UAI.
[26] H. Prade,et al. Possibilistic logic , 1994 .
[27] Ronen I. Brafman,et al. CP-nets: Reasoning and Consistency Testing , 2002, KR.
[28] Jérôme Lang,et al. Expressive Power and Succinctness of Propositional Languages for Preference Representation , 2004, KR.
[29] Gadi Pinkas,et al. Propositional Non-Monotonic Reasoning and Inconsistency in Symmetric Neural Networks , 1991, IJCAI.
[30] Fahiem Bacchus,et al. Graphical models for preference and utility , 1995, UAI.
[31] Patrice Perny,et al. GAI Networks for Utility Elicitation , 2004, KR.
[32] Ronen I. Brafman,et al. Reasoning With Conditional Ceteris Paribus Preference Statements , 1999, UAI.
[33] Jon Doyle,et al. Preferential Semantics for Goals , 1991, AAAI.
[34] Alexis Tsoukiàs,et al. A survey on non conventional preference modeling , 1992 .
[35] Leon van der Torre,et al. Utilitarian Desires , 2002, Autonomous Agents and Multi-Agent Systems.
[36] Régis Sabbadin. Decision As Abduction? , 1998, ECAI.
[37] Alexis Tsoukiàs,et al. A first-order, four valued, weakly paraconsistent logic and its relation to rough sets semantics , 2002 .
[38] Peter Haddawy,et al. Representations for Decision-Theoretic Planning: Utility Functions for Deadline Goals , 1992, KR.
[39] Didier Dubois,et al. Towards a Possibilistic Logic Handling of Preferences , 1999, Applied Intelligence.
[40] Sébastien Konieczny,et al. Distance Based Merging: A General Framework and some Complexity Results , 2002, KR.
[41] Jérôme Lang,et al. Propositional Distances and Preference Representation , 2001, ECSQARU.
[42] Sven Ove Hansson. What is ceteris paribus preference? , 1996, J. Philos. Log..
[43] Jérôme Lang,et al. Logical representation of preferences for group decision making , 2000, KR.
[44] Alessandro Saffiotti,et al. A General Approach for Inconsistency Handling and Merging Information in Prioritized Knowledge Bases , 1998, KR.
[45] Sébastien Konieczny,et al. On the Logic of Merging , 1998, KR.
[46] Peter Z. Revesz,et al. On the Semantics of Arbitration , 1997, Int. J. Algebra Comput..
[47] Hector Geffner,et al. Default reasoning - causal and conditional theories , 1992 .
[48] Leon van der Torre,et al. Parameters for Utilitarian Desires in a Qualitative Decision Theory , 2001, Applied Intelligence.
[49] Nic Wilson,et al. Extending CP-Nets with Stronger Conditional Preference Statements , 2004, AAAI.
[50] Didier Dubois,et al. Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.
[51] Judea Pearl,et al. System Z: a Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning^ , 1990 .
[52] S. Orlovsky. Decision-making with a fuzzy preference relation , 1978 .
[53] Gerhard Brewka,et al. Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.
[54] Yann Chevaleyre,et al. Welfare Engineering in Practice: On the Variety of Multiagent Resource Allocation Problems , 2004, ESAW.
[55] Ronen I. Brafman,et al. Reasoning with conditional ceteris paribus statements , 1999, UAI 1999.
[56] David Makinson,et al. Five faces of minimality , 1993, Stud Logica.
[57] Judea Pearl,et al. Specification and Evaluation of Preferences Under Uncertainty , 1994, KR.
[58] Nuel D. Belnap,et al. A Useful Four-Valued Logic , 1977 .
[59] J. M. Dunn,et al. Modern Uses of Multiple-Valued Logic , 1977 .
[60] Didier Dubois,et al. Possibilistic Logic in Decision , 1999 .
[61] Gerhard Brewka,et al. Logic programming with ordered disjunction , 2002, NMR.
[62] Bernhard Nebel,et al. Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.
[63] Jon Doyle,et al. Efficient utility functions for ceteris paribus preferences , 2002, AAAI/IAAI.
[64] Jérôme Lang,et al. Conditional Desires and Utilities: an Alternative Logical Approach to Qualitative Decision Theory , 1996, ECAI.
[65] Joseph Y. Halpern. Defining Relative Likelihood in Partially-Ordered Structures , 1997, J. Artif. Intell. Res..
[66] Matthew L. Ginsberg,et al. Supermodels and Robustness , 1998, AAAI/IAAI.
[67] Jon Doyle,et al. A Logic of Relative Desire (Preliminary Report) , 1991, ISMIS.
[68] C. Cayrol. Un modèle logique général pour le raisonnement révisable , 1992 .