Harnessing Sulfur(VI) Fluoride Exchange Click Chemistry and Photocatalysis for Deaminative Benzylic Arylation

[1]  Ángel Rentería-Gómez,et al.  Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions , 2023, Nature Catalysis.

[2]  T. Diao,et al.  Carbon-centered radical capture at nickel(II) complexes: Spectroscopic evidence, rates, and selectivity , 2023, Chem.

[3]  Danielle M. Schultz,et al.  Diversifying Amino Acids and Peptides via Deaminative Reductive Cross-Couplings Leveraging High-Throughput Experimentation. , 2023, Journal of the American Chemical Society.

[4]  Hao Wang,et al.  Native Amides as Enabling Vehicles for Forging sp3–sp3 Architectures via Interrupted Deaminative Ni-Catalyzed Chain-Walking , 2023, Journal of the American Chemical Society.

[5]  Mingbin Yuan,et al.  Direct Deaminative Functionalization. , 2022, Journal of the American Chemical Society.

[6]  S. Dongbang,et al.  Ni/Photoredox-Catalyzed C(sp3)-C(sp3) Coupling between Aziridines and Acetals as Alcohol-Derived Alkyl Radical Precursors. , 2022, Journal of the American Chemical Society.

[7]  G. Lloyd‐Jones,et al.  Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNiII(L)Br and Rate/Selectivity Factors , 2022, Journal of the American Chemical Society.

[8]  G. C. Fu,et al.  Catalytic Enantioselective α-Alkylation of Amides by Unactivated Alkyl Electrophiles. , 2022, Journal of the American Chemical Society.

[9]  L. Cavallo,et al.  Mechanistic insights into photochemical nickel-catalyzed cross-couplings enabled by energy transfer , 2022, Nature Communications.

[10]  A. Doyle,et al.  Oxidative Addition of Aryl Halides to a Ni(I)-Bipyridine Complex. , 2022, Journal of the American Chemical Society.

[11]  A. Vasudevan,et al.  What is in Our Kit? An Analysis of Building Blocks Used in Medicinal Chemistry Parallel Libraries. , 2021, Journal of medicinal chemistry.

[12]  M. A. Ashley,et al.  Dual Nickel/Photoredox-Catalyzed Deaminative Cross-Coupling of Sterically Hindered Primary Amines. , 2021, Journal of the American Chemical Society.

[13]  Mingbin Yuan,et al.  Direct Deamination of Primary Amines via Isodiazene Intermediates. , 2021, Journal of the American Chemical Society.

[14]  Balu D. Dherange,et al.  Skeletal editing through direct nitrogen deletion of secondary amines , 2021, Nature.

[15]  Shane W. Krska,et al.  C(sp3)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling , 2021, Science.

[16]  L. Hamann,et al.  Intermolecular Crossed [2 + 2] Cycloaddition Promoted by Visible-Light Triplet Photosensitization: Expedient Access to Polysubstituted 2-Oxaspiro[3.3]heptanes. , 2021, Journal of the American Chemical Society.

[17]  Yu Guo,et al.  Recent Developments in Deaminative Functionalization of Alkyl Amines , 2021 .

[18]  Guisheng Zhang,et al.  Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN2 pincer ligand , 2020, Nature Communications.

[19]  M. A. Ashley,et al.  Photoredox-Catalyzed Deaminative Alkylation via C-N Bond Activation of Primary Amines. , 2020, Journal of the American Chemical Society.

[20]  Jiang Wang,et al.  Nickel-Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N-Alkyl Pyridinium Salts with Activated Carboxylic Acids. , 2020, Angewandte Chemie.

[21]  R. Rasappan,et al.  Nickel-Catalyzed Cross-Coupling of Alkyl Carboxylic Acid Derivatives with Pyridinium Salts via C-N Bond Cleavage. , 2020, Organic letters.

[22]  Josep Cornella,et al.  Pyrylium Salts: Selective Reagents for the Activation of Primary Amino Groups in Organic Synthesis , 2020, Synthesis.

[23]  Vivien Ionasz,et al.  The synthetic versatility of the Tiffeneau–Demjanov chemistry in homologation tactics , 2019, Monatshefte für Chemie - Chemical Monthly.

[24]  I. Leito,et al.  On the Basicity of Organic Bases in Different Media , 2019, European Journal of Organic Chemistry.

[25]  Shang-Zheng Sun,et al.  Site-selective catalytic deaminative alkylation of unactivated olefins. , 2019, Journal of the American Chemical Society.

[26]  C. Basch,et al.  Deaminative Arylation of Amino Acid-derived Pyridinium Salts. , 2019, Organic letters.

[27]  J. Cheah,et al.  Total Synthesis and Anti-Cancer Activity of All Known Communesin Alkaloids and Related Derivatives , 2019, Journal of the American Chemical Society.

[28]  D. Weix,et al.  LiCl-Accelerated Multimetallic Cross-Coupling of Aryl Chlorides with Aryl Triflates , 2019, Journal of the American Chemical Society.

[29]  D. Kong,et al.  Radical coupling from alkyl amines , 2019, Nature Catalysis.

[30]  G. Brudvig,et al.  Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2 )-C(sp3 )Coupling Reactions. , 2019, Angewandte Chemie.

[31]  G. Molander,et al.  Deaminative Reductive Arylation Enabled by Nickel/Photoredox Dual Catalysis. , 2019, Organic letters.

[32]  V. R. Yatham,et al.  Ni-catalyzed Reductive Deaminative Arylation at sp3 Carbon Centers. , 2019, Organic letters.

[33]  Yi Pan,et al.  Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C─N bond activation , 2019, Science Advances.

[34]  P. Baran,et al.  Quaternary Centers by Nickel-Catalyzed Cross-Coupling of Tertiary Carboxylic Acids and (Hetero)Aryl Zinc Reagents. , 2018, Angewandte Chemie.

[35]  F. Albericio,et al.  Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry , 2018, Journal of Fluorine Chemistry.

[36]  K. Sharpless,et al.  A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an "F-SO2 +" Donor of Unprecedented Reactivity, Selectivity, and Scope. , 2018, Angewandte Chemie.

[37]  J. T. Njardarson,et al.  Analysis of US FDA-Approved Drugs Containing Sulfur Atoms , 2018, Topics in Current Chemistry.

[38]  P. Lindovská,et al.  Concise Synthesis of (-)-Hodgkinsine, (-)-Calycosidine, (-)-Hodgkinsine B, (-)-Quadrigemine C, and (-)-Psycholeine via Convergent and Directed Modular Assembly of Cyclotryptamines. , 2017, Journal of the American Chemical Society.

[39]  Guangfu Yang,et al.  Sulfur-Containing Agrochemicals , 2017, Topics in Current Chemistry.

[40]  Justin T Barry,et al.  Radical Cage Effects: The Prediction of Radical Cage Pair Recombination Efficiencies Using Microviscosity Across a Range of Solvent Types. , 2017, Journal of the American Chemical Society.

[41]  Felix J R Klauck,et al.  Deaminative Strategy for the Visible-Light-Mediated Generation of Alkyl Radicals. , 2017, Angewandte Chemie.

[42]  J. Liao,et al.  Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C-N Bond Activation. , 2017, Journal of the American Chemical Society.

[43]  G. Molander,et al.  Photochemical Nickel-Catalyzed C–H Arylation: Synthetic Scope and Mechanistic Investigations , 2016, Journal of the American Chemical Society.

[44]  A. Doyle,et al.  Direct C(sp3)-H Cross Coupling Enabled by Catalytic Generation of Chlorine Radicals. , 2016, Journal of the American Chemical Society.

[45]  Jonas Boström,et al.  Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? , 2016, Journal of medicinal chemistry.

[46]  K. Skubi,et al.  Dual Catalysis Strategies in Photochemical Synthesis , 2016, Chemical reviews.

[47]  Z. Xi,et al.  Transition-Metal-Catalyzed Cleavage of C-N Single Bonds. , 2015, Chemical reviews.

[48]  D. Nocera,et al.  Trap-Free Halogen Photoelimination from Mononuclear Ni(III) Complexes. , 2015, Journal of the American Chemical Society.

[49]  Younan Xia,et al.  Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. , 2014, Angewandte Chemie.

[50]  T. Jamison,et al.  Recent advances in homogeneous nickel catalysis , 2014, Nature.

[51]  G. Yap,et al.  Nickel-catalyzed cross couplings of benzylic ammonium salts and boronic acids: stereospecific formation of diarylethanes via C-N bond activation. , 2013, Journal of the American Chemical Society.

[52]  M. Movassaghi,et al.  Directed heterodimerization: stereocontrolled assembly via solvent-caged unsymmetrical diazene fragmentation. , 2011, Journal of the American Chemical Society.

[53]  Chao-yuan Wang,et al.  Nickel-catalyzed Kumada cross-coupling reactions of tertiary alkylmagnesium halides and aryl bromides/triflates. , 2011, Journal of the American Chemical Society.

[54]  S. D. Karlen,et al.  Photolysis of an asymmetrically substituted diazene in solution and in the crystalline state , 2009, Photochemical and Photobiological Sciences.

[55]  I. Gould,et al.  Dynamics of radical pair reactions in micelles , 1985 .

[56]  J. W. Timberlake,et al.  Thiadiaziridine 1,1-dioxides: synthesis and chemistry , 1981 .

[57]  P. Engel Mechanism of the thermal and photochemical decomposition of azoalkanes , 1980 .

[58]  F. D. Greene,et al.  Stereochemistry of free-radical recombination reactions. Cage effect in decomposition of SS-(-)-azobis-.alpha.-phenylethane , 1970 .

[59]  J. H. Bayless,et al.  Influence of solvent on diazoalkane-alkyldiazonium ion equilibriums in amine deaminations , 1969 .

[60]  E. Schmitz,et al.  Preparation of Azo Compounds from N,N′‐Dialkylsulfamides , 1965 .