Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases

Bacterial cytochrome cbb3 oxidases are members of the haeme‐copper oxidase superfamily that are important for energy conservation by a variety of proteobacteria under oxygen‐limiting conditions. The opportunistic pathogen Pseudomonas aeruginosa is unusual in possessing two operons that each potentially encode a cbb3 oxidase (cbb3‐1 or cbb3‐2). Our results demonstrate that, unlike typical enzymes of this class, the cbb3‐1 oxidase has an important metabolic function at high oxygen tensions. In highly aerated cultures, cbb3‐1 abundance and expression were greater than that of cbb3‐2, and only loss of cbb3‐1 influenced growth. Also, the activity of cbb3‐1, not cbb3‐2, inhibited expression of the alternative oxidase CioAB and thus influenced a signal transduction pathway much like that found in the α‐proteobacterium Rhodobacter sphaeroides. Cbb3‐2 appeared to play a more significant role under oxygen limitation by nature of its increased abundance and expression compared to highly aerated cultures, and the regulation of the cbb3‐2 operon by the putative iron‐sulphur protein Anr. These results indicate that each of the two P. aeruginosa cbb3 isoforms have assumed specialized energetic and regulatory roles.

[1]  H. Williams,et al.  Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa. , 2003, Microbiology.

[2]  T. Donohue,et al.  Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide‐insensitive terminal oxidase , 2002, Molecular microbiology.

[3]  P. Rustin,et al.  Cytochrome oxidase in health and disease. , 2002, Gene.

[4]  J. Miranda-Ríos,et al.  Regulation of Gene Expression in Response to Oxygen in Rhizobium etli: Role of FnrN in fixNOQPExpression and in Symbiotic Nitrogen Fixation , 2001, Journal of bacteriology.

[5]  N. Watmough,et al.  Cytochrome cbb(3) oxidase and bacterial microaerobic metabolism. , 2001, Biochemical Society transactions.

[6]  Manuela M. Pereira,et al.  A novel scenario for the evolution of haem-copper oxygen reductases. , 2001, Biochimica et biophysica acta.

[7]  F. Daldal,et al.  The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. , 2001, Journal of molecular biology.

[8]  H. Westerhoff,et al.  Regulation of expression of terminal oxidases in Paracoccus denitrificans. , 2001, European journal of biochemistry.

[9]  S. Kaplan,et al.  Generalized approach to the regulation and integration of gene expression , 2001, Molecular microbiology.

[10]  H. Myllykallio,et al.  Dual role for cytochrome cbb3 oxidase in clinically relevant proteobacteria? , 2000, Trends in microbiology.

[11]  J. Mattick,et al.  An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. , 2000, Microbiology.

[12]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[13]  S. Kaplan,et al.  Redox signaling: globalization of gene expression , 2000, The EMBO journal.

[14]  V. Korolik,et al.  Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori , 2000, Archives of Microbiology.

[15]  D. Richardson,et al.  Bacterial respiration: a flexible process for a changing environment. , 2000, Microbiology.

[16]  Dieter Haas,et al.  Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis , 2000, Archives of Microbiology.

[17]  C. Kaiser,et al.  Mutational Analysis of the cbb Operon (CO2 Assimilation) Promoter of Ralstonia eutropha , 1999, Journal of bacteriology.

[18]  S. Kaplan,et al.  The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. , 1999, Biochemistry.

[19]  S. Kaplan,et al.  A Redox-Responsive Pathway for Aerobic Regulation of Photosynthesis Gene Expression in Rhodobacter sphaeroides 2.4.1 , 1998, Journal of bacteriology.

[20]  Y. Igarashi,et al.  Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr , 1998, Molecular microbiology.

[21]  B. Barquera,et al.  The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase. , 1998, Biochimica et biophysica acta.

[22]  H. Williams,et al.  The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa. , 1997, FEMS microbiology letters.

[23]  J. Goldberg,et al.  Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections , 1997, Infection and immunity.

[24]  M. Hynes,et al.  Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. , 1997, Molecular plant-microbe interactions : MPMI.

[25]  S. Kaplan,et al.  Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1 , 1997, Journal of bacteriology.

[26]  H. Westerhoff,et al.  FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation , 1997, Molecular microbiology.

[27]  A. Schlüter,et al.  Rhizobium leguminosarum bv. viciae contains a second fnr/fixK‐like gene and an unusual fixL homologue , 1996, Molecular microbiology.

[28]  H. Hennecke,et al.  Assembly and Function of the Cytochrome cbb Oxidase Subunits in Bradyrhizobium japonicum(*) , 1996, The Journal of Biological Chemistry.

[29]  D. Haas,et al.  The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. , 1996, Microbiology.

[30]  H. Hennecke,et al.  A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum , 1996, Journal of bacteriology.

[31]  H. Hennecke,et al.  The ccoNOQP gene cluster codes for a cb‐type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus , 1994, Molecular microbiology.

[32]  H. Fischer Genetic regulation of nitrogen fixation in rhizobia. , 1994, Microbiological reviews.

[33]  B. Barquera,et al.  The superfamily of heme-copper respiratory oxidases , 1994, Journal of bacteriology.

[34]  J. Oost,et al.  The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. , 1994, FEMS microbiology letters.

[35]  C. Elmerich,et al.  Functional analysis of the fixNOQP region of Azorhizobium caulinodans , 1994, Journal of bacteriology.

[36]  C. Harwood,et al.  Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for gram- bacteria. , 1993, Gene.

[37]  H. Hennecke,et al.  Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Helinski,et al.  A region of the broad-host-range plasmid RK2 causes stable in planta inheritance of plasmids in Rhizobium meliloti cells isolated from alfalfa root nodules , 1992, Journal of bacteriology.

[39]  C. Reimmann,et al.  Anaerobic growth and cyanide synthesis of Pseudomonas aeruginosa depend on anr, a regulatory gene homologous with fnr of Escherichia coli , 1991, Molecular microbiology.

[40]  R. Sawers Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli , 1991, Molecular microbiology.

[41]  D. Kahn,et al.  fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. , 1989, The EMBO journal.

[42]  P. Thomas,et al.  An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. , 1976, Analytical biochemistry.

[43]  P. Castric Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. , 1975, Canadian journal of microbiology.

[44]  M. Pudek,et al.  Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli. , 1974, Archives of biochemistry and biophysics.

[45]  R. Poole,et al.  Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. , 2000, Advances in microbial physiology.

[46]  M. Delgado,et al.  Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. , 1998, Advances in microbial physiology.

[47]  A. Schlüter,et al.  A homolog of the Rhizobium meliloti nitrogen fixation gene fixN is involved in the production of a microaerobically induced oxidase activity in the phytopathogenic bacterium Agrobacterium tumefaciens. , 1995, Molecular & general genetics : MGG.

[48]  H. Krisch,et al.  Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. , 1987, Gene.

[49]  L. P. Solomonson Cyanide as a metabolic inhibitor , 1981 .

[50]  H. Vogel,et al.  Acetylornithinase of Escherichia coli: partial purification and some properties. , 1956, The Journal of biological chemistry.